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Abstract

The global resurgence of industrial policy has revived the appeal of downstream

diversification (beneficiation) – adding value to raw materials – as a development

strategy. Despite this intuitive appeal, empirical evidence of its effectiveness remains

scarce, with few real-world success stories. We address this gap through a novel em-

pirical analysis of export product co-location and new relatedness metrics to explain

observed diversification patterns. Our results show that product co-location patterns

are driven primarily by similarities in occupational structures. Industries sharing

high-skill occupations (and to a lesser extent, non-tradable inputs) are strong predic-

tors of diversification. Conversely, relatedness metrics based on value-chain linkages

(existing upstream inputs) have weak to no predictive power. These findings suggest

rethinking development strategies focused on adding value to raw materials. Instead,

countries should promote industries that build on existing know-how – particularly

those with similar occupational structures or non-tradable capabilities already present

in the economy.
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1 Introduction

The idea that countries can accelerate development by adding value to their natural re-

sources –commonly referred to as beneficiation– has deep historical roots and enduring

intuitive appeal. Drawing on the historical legacy of structuralist thought of Prebisch and

Singer, and Hirschman’s influential theory of backward and forward linkages, the notion

that resource-based economies can evolve by building upstream and downstream capabili-

ties has shaped decades of policy. In recent years, the global resurgence of industrial policy

has brought this idea back to the center of many national strategies, especially in mineral

and energy-rich economies. Yet, despite its popularity in both policy and rhetoric, there is

a striking shortage of empirical evidence to support the effectiveness of beneficiation. As a

matter of fact, few resource-rich countries have transitioned from exporting raw materials

to significant exporters of processed goods, and the few that have, did so under conditions

not easily replicable.1

This paper fills that gap by examining the relative importance of beneficiation ver-

sus the role of other productive capabilities in explaining industrial development across

countries. We leverage detailed country-level export data and introduce new metrics of

industry relatedness to assess which dimensions –value-chain linkages or knowledge-based

capabilities– better account for the diversification paths observed in practice. Our empiri-

cal strategy relies on two complementary approaches. First, we examine whether patterns

of industry co-location across countries are primarily driven by input-output connections

or by knowledge-based factors, proxied through similarities in occupational structures and

patent activity. Second, we analyze whether the entry or exit of exporting industries over

time can be explained by the presence of related industries at baseline. These metrics

allow us to test competing hypotheses: does industrial upgrading tend to occur through
1Many developing economies implement industrial policies to selectively promote certain sectors, aiming

to replicate the rapid growth experiences of Japan (1950s–1970s), South Korea and Taiwan (1960s–1980s)
and, more recently, China. One of the oldest and most debated questions in economics is how industrial
policies can effectively foster economic development – a challenge famously framed by Hirschman (1958).
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downstream processing of existing raw materials, or through the redeployment of skills and

capabilities already embedded in the domestic economy.

Our findings suggest that, while some randomness exists in co-location patterns and

industry turnover, forward linkages –as a proxy for beneficiation– provide limited to zero

explanatory power. These results hold even when the analysis is restricted to natural re-

source sectors or the diversification trajectories of resource-rich countries.2 In contrast,

knowledge-based measures – particularly those linked to high-skill occupations and shared

technological intensity – offer a more robust and consistent explanation where new indus-

tries are likely to emerge. They also help explain where previously competitive sectors lose

their foothold in global markets. These results provide much-needed empirical grounding

for ongoing industrial policy debates, suggesting a shift in emphasis from supply chain

integration towards the development of localized knowledge ecosystems.

This paper is organized as follows. We first review the beneficiation literature –its his-

torical roots and current influence on national strategies– and contrast it with knowledge-

based diversification centered on capabilities and human capital. We then describe the data

and methods, outlining two empirical approaches. Next, we present results and robustness

checks. We conclude with policy implications.

2 Literature review

The strategy of fostering industrialization by adding value to natural resources has deep

historical roots in development economics. Early structuralists like Raúl Prebisch and Hans

Singer argued that commodity-dependent countries faced deteriorating terms of trade and
2The long-debated “resource curse” (Sachs and Warner, 1995) has been studied recently through the

lens between resource wealth and low economic diversification, as natural resources come to dominate
exports without other sectors taking off (Ross, 2017; Bahar and Santos, 2018; Lashitew, Ross and Werker,
2021). Such concentration heightens vulnerability to commodity-price volatility and resource depletion
(Devlin and Titman, 2004; Venables, 2016; Van Der Ploeg and Poelhekke, 2019). It can also establish
rent-heavy extractive sectors, preventing the development of market and political institutions needed for
broad-based and inclusive growth (Pritchett, Sen and Werker, 2018).
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needed to transform their export structures – a view that set the stage for later advocacy

of resource-based industrialization (Prebisch, 1950; Singer, 1950). Perhaps the most influ-

ential theoretical foundation came from Albert Hirschman in “The Strategy of Economic

Development” (1958), which introduced the notion of backward and forward linkages as

channels through which one industry can spur the development of others. Hirschman ar-

gued for “unbalanced growth”, suggesting that investing in sectors with strong linkages

could induce broader economic expansion even if resources were limited. Unlike more ab-

stract development theories of the time, his framework was considered actionable, aided

by the proliferation of national input-output tables that allowed empirical estimation of

linkage strength.

While Hirschman’s thesis does not explicitly reference Marshallian externalities, his

theory of linkages shares important conceptual ground with them. Both frameworks em-

phasize that industrial development is not an isolated process but driven by interdepen-

dencies across firms or sectors. However, the mechanisms and drivers differ: Hirschman’s

backward and forward linkages are sectoral and directional (anchored in input-output rela-

tionships). In contrast, Marshallian externalities –central to urban economics– are spatial

and non-directional, highlighting local productivity gains from input sharing, labor pool-

ing, and knowledge spillovers within industry clusters (Ellison, Glaeser and Kerr, 2010).

While Hirschman was concerned with national-scale sequencing of industrial growth, the

Marshallian framework emphasizes microeconomic benefits of geographic proximity. Rec-

ognizing this distinction helps bridge development theory with insights from economic

geography, especially when studying co-location patterns and the role of capabilities in

shaping diversification.

Hirschman’s linkage concept provided intellectual justification for postwar policies like

import-substituting industrialization (ISI). Many developing countries in Latin America,

Africa, and Asia pursued beneficiation-like strategies in the 1960s and 1970s under the

belief that nurturing industries “upstream” or “downstream” of their primary commodities
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would spark self-sustaining industrial growth. Hirschman himself was cautiously optimistic

yet nuanced: he warned that simply having linkages on paper was not enough, successful

realization of linkages required entrepreneurial responses, learning-by-doing, and support-

ive institutions.3

The influential role of linkages as a guiding principle of economic development plans has

persisted despite limited theoretical foundations and scant empirical validation.4 Rather

than providing a historical account, it is perhaps more useful to highlight how the idea

of beneficiation –rooted in the logic of forward and backward linkages– remains active

and influential, shaping national strategies across Africa, Asia, and Latin America. Na-

tional development plans (NDP) continue to frame structural transformation as moving

downstream along existing resource or agricultural value chains.

In South Africa, the NDP 2030 identifies priority areas where beneficiation is likely

to lead to downstream manufacturing, asserting that it can “raise the unit value of South

African exports” and spur “resource-cluster development, including the identification of so-

phisticated resource-based products that South Africa can manufacture.”5 Nigeria’s NDP

2021–2025 similarly promotes “a backward integration strategy to encourage the beneficia-

tion of primary resources” as well as “enhanced local value addition through backward and

forward linkages.”6

Kenya’s Vision 2030 outlines plans to develop “a robust, diversified, and competitive

manufacturing sector” by “exploiting opportunities in value addition to local agricultural
3In later works, (Hirschman, 1968, 1981), he noted that natural resources do not automatically generate

industrialization without deliberate efforts to overcome technical and market barriers.
4Critics have argued that policies aimed at inducing investment based on expected linkage effects were

misguided, asserting that the key drivers of industrial development are comparative advantage rooted
in factor endowments and technological differences as in the Heckscher–Ohlin or Ricardian traditions.
Classic critiques of linkage-driven import-substitution include Little, Scitovsky and Scott (1970), Balassa
(1971), Bhagwati (1978), and Krueger (1978). More recently, Lin (2012) contrasts “comparative-advantage-
following” with “comparative-advantage-defying” strategies and argues that many failures of heavy-industry
targeting interventions stem from violating comparative advantage rather than from a lack of linkages.
Without a clear articulation of the underlying market failure, Hirschman’s concept of linkages has been
dismissed by some as lacking economic rigor or practical relevance. Puga and Venables (1999), for instance,
contend that such linkages are “of no particular economic significance.”

5National Planning Commission of South Africa (2012) p. 146.
6Federal Republic of Nigeria (2021), pp. 8, 37.
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produce” and “adding value to intermediate imports and capturing the ‘last step’ of value

addition in metals and plastics.7 Ethiopia’s Ten-Year NPD (2021-2030) highlights “cre-

ating value additions to export commodities” as key to sustaining growth and reducing

import dependence, by identifying opportunities in priority sectors “through input-output

linkages.”8

One of the key pillars of Tanzania’s National Five-Year NDP 2021-2026 are the pol-

icy “interventions to further deepen industrialisation, driven by STI capabilities for value

addition in manufacturing and productive sectors”, aimed at “increasing Tanzania’s partic-

ipation in global and regional trade in which exports shall embody local value addition.”9

The Democratic Republic of Congo’s NDP 2022–2026 calls for “industrialization through

local processing of natural resources” to capture more value from copper, cobalt, and

agricultural commodities.10 This has also been a long-standing aspiration of Namibia,

whose governing party SWAPO’s election manifesto is titled “Unity in Diversity: Natural

Resources Beneficiation and Youth Empowerment for Sustainable Development” and por-

trays beneficiation as the cornerstone of industrial growth and prosperity: “Value addition

to local products, and beneficiation of natural resources shall be used to create sustainable

value chains to be able to boost economic growth and prosperity for the entire Namibian

Populace.”11

Outside Africa, similar aspirations recur. Indonesia’s National Medium-Term Devel-

opment Plan 2025 links export taxes and bans on unprocessed nickel, tin, and baux-

ite to the goal of fostering domestic refining capacity and attracting smelter investment

(Cahyaningrum, 2023).12 With the global surge in battery demand, lithium-rich develop-

ing countries –such as Chile and Bolivia– have sought to retain more value domestically
7Ministry of Planning and National Development, Government of the Republic of Kenya (2007), pp.

109, 137-138. See also The People Daily (2021).
8Planning and Development Commission (Ethiopia), pp. 9, 15.
9Government of the United Republic of Tanzania (2021), page 5.

10Government of the Democratic Republic of the Congo (2022).
11SWAPO Party (2024).
12Government of the Republic of Indonesia (2023).
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by restricting raw lithium exports and fostering downstream industrial development. In

Chile, the government renegotiated existing contracts in 2021 to ban raw brine exports

and require on-site production of lithium carbonate or hydroxide –the initial stages of

lithium refining– aiming to “move beyond raw export to encompass advanced processing

and battery materials production.”13 In Bolivia, legislation mandates domestic processing

and prohibits the export of raw brine, requiring that lithium chloride, sulfate, hydroxide,

and carbonate be produced within Bolivia (von Vacano, 2024).

Together, these strategies display a persistent developmental narrative in which bene-

ficiation represents both industrial ambition and economic sovereignty.

The predominance of beneficiation and value addition in national development plans

across the world stands in sharp contrast with the shortage of empirical evidence docu-

menting its effectiveness. Among those systematically testing the role of linkages –and par-

ticularly the case for beneficiation– we find the papers of Hausmann, Klinger and Lawrence

(2008), Blonigen (2016), Rachapalli (2024), and Lane (2025).

Using global export data, Hausmann, Klinger and Lawrence (2008) examine whether

resource-rich countries develop downstream manufacturing linked to their primary exports.

They found that very few exporters of raw materials also export processed forms, and that

transitions to greater processing are rare. Forward linkages appear to play a minimal

role relative to standard determinants of comparative advantage, despite decades of policy

efforts to promote downstream diversification.14 This study has some shortcomings that

we are aiming to address in this paper. First, it uses co-location of exports as a proxy

for value-chain proximity, a problematic choice as it captures other effects associated to

agglomeration externalities.15 Second, their skill-relatedness measure is not derived directly

from occupational data at the industry level but rather based on much coarser datasets
13Gobierno de Chile (2023), page 7.
14This point has been more formally made by Ostensson (2019) for the case of Africa: Attempts to

measure the effectiveness of value-chain linkages vs. knowhow or skill-based diversification are biased
towards the former after decades of efforts to promote upstream and downstream diversification.

15Indeed, shortly after the publication of this paper, Hidalgo et al. (2007) started using proximity metrics
based on export co-location as a proxy for skill relatedness.
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such as Leamer’s commodity groupings, and Lall’s technological sophistication (Leamer,

1984; Lall, 2000).

Blonigen (2016) evaluates the impact of industrial policies in the steel sector –a classic

upstream industry– on downstream performance of export manufacturing across coun-

tries.16

Using a unique data set covering steel-sector interventions (tariffs, production subsi-

dies, export subsidies, etc.) from 1975–2000, finds that ramping up protection for steel

tended to hurt downstream industries that rely on steel inputs. On average, one-standard-

deviation increase in industrial policy intensity leads to a 3.6% decline in downstream

export performance – with effects reaching up to 50% for sectors that rely heavily on steel.

The negative impacts are largely driven by export subsidies and non-tariff barriers and are

particularly pronounced in developing countries. These results challenge the beneficiation

logic and suggest that making an upstream input artificially cheap or abundant domesti-

cally does not automatically create a competitive downstream industry. To the contrary, it

may backfire by removing incentives to remain efficiency or by provoking retaliatory trade

measures that hit downstream exports.

Rachapalli (2024) contributes new empirical evidence on vertical spillovers within global

value chains (GVCs). Using highly disaggregated trade data for 70 countries between

1996–2018, matched with input–output relationships constructed from Indian firm-level

data, the paper shows that revealed comparative advantage in a product improves in re-

sponse to exogenous demand shocks in upstream or downstream products. In other words,

positive shocks in one stage of the value chain (e.g. yarn or shirts) increase the likelihood

of competitiveness in adjacent stages (e.g. fabric). The results suggest that participation
16Despite extensive research on trade protection, few studies focus on its downstream effects. Hoekman

and Leidy (1992) and Sleuwaegen, Belderbos and Jie-A-Joen (1998) propose a theory of cascading pro-
tection, where upstream protection increases the likelihood of protection in downstream sectors. Feinberg
and Kaplan (1993) find empirical support for this in U.S. antidumping (AD) and countervailing duty
(CVD) cases. Other studies, such as Krupp and Skeath (2002), show that AD protection negatively im-
pacts downstream production. Similarly, Liebman and Tomlin (2007) find U.S. steel safeguards harmed
steel-using industries, though the magnitude was not clearly linked to steel’s cost share.
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in GVCs can generate dynamic gains by facilitating expansion into new stages of produc-

tion. The study also documents strong heterogeneity across sectors: food and beverages

exhibit large vertical spillovers, whereas mining and chemicals show negligible effects. For

resource-rich economies pursuing beneficiation, this implies that forward linkages may ma-

terialize in some industries but not others, depending on sectoral characteristics and the

nature of learning opportunities along the chain.

Lane (2025) provides one of the most rigorous recent empirical analyses of South Ko-

rea’s industrial policy during its 1970s Heavy and Chemical Industry (HCI) drive. Using

a difference-in-differences approach that compares industries explicitly targeted under the

1973–79 HCI program to non-targeted sectors, Lane finds substantial positive effects: tar-

geted industries experienced significant gains in output growth, productivity, and dynamic

comparative advantage.17 Leveraging input–output data, the study also documents mean-

ingful forward linkage effects – downstream sectors that relied on inputs from targeted

industries exhibited improved output performance and export competitiveness.18

South Korea’s experience is often viewed as a best-case of linkage-based industrial pol-

icy, but it is hard to replicate—especially for resource-rich economies without a broad

industrial base or strong institutions. The lesson is that forward linkages from upstream

sectors (e.g., steel, petrochemicals) can catalyze wider upgrading only when embedded in a

coherent, internally consistent strategy. Korea’s success rested not on mandates or export

restrictions, but on targeted investment, performance-based incentives, export orientation,

and macroeconomic stability. Indeed, scholars such as Peter Evans (Embedded Autonomy,

1995), Alice Amsden (Asia’s Next Giant, 1989), and Atul Kohli (State-directed develop-

ment, 2004) have interpreted Korea’s success through this lens – emphasizing sequencing,
17This result contrasts with arguments that similar industrial policies across countries are associated

with increased prices for downstream firms (Blonigen, 2016).
18A closely related contribution is Liu (2019), who develops a general equilibrium model of industrial pol-

icy in production networks and shows that distortions accumulate upstream, making subsidies to upstream
sectors potentially welfare enhancing. While Liu provides a theoretical rationale for targeting upstream
industries due to amplification along the value chain, Lane (2025) offers empirical support by document-
ing forward spillovers and durable gains during South Korea’s HCI drive. Taken together, these papers
underscore both the theoretical logic and practical effectiveness of well designed upstream interventions.
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state-led inducement, and the systematic exploitation of linkage effects.19 By contrast,

current beneficiation efforts target sectors like lithium or bauxite, which are often less em-

bedded in domestic production networks and exhibit weaker spillover potential. Without

complementary policies to build downstream capabilities, such strategies are unlikely to

generate the transformational effects seen in Korea’s HCI program.

Our paper addresses two gaps in the literature. First, no study systematically compares

the explanatory power of input–output linkages (the basis of beneficiation arguments) with

knowledge-based relatedness measures such as occupational or technological proximity;

existing attempts either use coarse proxies (Hausmann, Klinger and Lawrence, 2008) or

focus on single sectors (Blonigen, 2016). Second, it remains unclear whether cross-country

diversification reflects downstream processing of natural resources or the redeployment

of knowledge-based capabilities. By decomposing export co-location and explicitly testing

alternative relatedness metrics, we provide the first large-scale empirical evaluation of these

competing hypotheses.

3 Methodology and data sources

To examine the path dependence of diversification, our empirical analysis proceeds in two

steps. First, we unpack co-export patterns to assess whether the observed co-location of

industries across countries is better explained by input–output linkages, occupational or

technological similarities, or other forms of relatedness. This allows us to identify which

productive factors account for the tendency of industries to appear together or co-locate.

Second, we test whether the presence of related industries –summarized through density

metrics– predicts the subsequent entry or exit of industries. This step directly evalu-

ates whether diversification follows a beneficiation-driven trajectory, in which downstream

sectors emerge around existing upstream industries, or whether it is instead shaped by
19Evans (1995); Amsden (1989); Kohli (2004).
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knowledge-based capabilities already embedded in the economy.

3.1 Unpacking co-location

We begin by decomposing the drivers of export co-location. This analysis provides ini-

tial evidence on whether the observed patterns of co-presence among industry pairs are

driven by input-output linkages –specifically forward linkages, consistent with the logic of

beneficiation– or by other factors. We unpack the export co-location metric, which has

been used in the literature as a proxy for both value-chain linkages (Hausmann, Klinger

and Lawrence, 2008) and know-how relatedness (Hidalgo et al., 2007), to better understand

its underlying determinants.

To calculate co-exporting, we begin by first defining whether an industry is present

in a country using a traditional measure of revealed comparative advantage (RCA, after

Balassa (1965)) following a standard practice in the literature:

Mc,i = RCAc,i � 1 =

0

@
xc,iP
i xc,iP
c xc,iP

c

P
i xc,i

1

A � 1 (1)

where xc,i denote the exports of country c in industry i. The RCA can be interpreted as the

relative importance of an industry in a country’s export basket (the numerator), compared

to the industry’s share in global trade (the denominator). A country is considered to have

specialized in an industry and achieved comparative advantage (or competitive presence)

when the RCA is equal or greater than one. Accordingly, we define the binary variable

Mc,i which takes the value of one if industry i has RCA equal or larger than one in country

c, and zero otherwise.20

20In addition, to eliminate spurious cases of industry presence –particularly in smaller countries– we
apply a minimum export-value threshold: an industry is considered present only if its export value exceeds
US$10 million. This condition is binding in fewer than 1% of observations in the full sample.
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Then, we calculate the pairwise matrix of co-exporting as

Ci,j = P (i|j) =
 

1

N

X

c

Mc,i = 1

!
|M.,j = 1 (2)

Ci,j measures the likelihood of observing competitive presence in industry i conditional

on having presence in industry j. Importantly, we define this variable differently from

previous studies (Hidalgo et al., 2007; Hausmann, Klinger and Lawrence, 2008), specifically

using an asymmetric definition or proximity as our objective is to test the directionality

of the relationship between industries (for example, whether downstream industries such

as petrochemicals (i) tend to emerge when upstream sectors like petroleum gases (j) are

already present).21 As a result, the computed matrix is not symmetric: the likelihood of

observing industry i given industry j is present differs from the likelihood of observing

j given i. Due to the use of industry-level characteristics –described in detail below– we

restrict our analysis to 233 tradable industries, resulting in a co-exporting matrix with

233⇥ 232 = 54, 056 observations.

We explore the drivers of co-exporting estimating the following type of regressions by

OLS,

Ci,j = ↵ + � ⇥ 'i,j + �i + �j + ✏i,j (3)

where Cc,i is the pattern of co-exporting of industries i, j; 'c,i represent various measures of

relatedness between industries – such as the extent to which industry i uses inputs sourced

from industry j, or the similarity in the occupational composition of their workforces. In

the regression we control for industry fixed effects, represented by �i and �j, to control for
21Proximity from co-exports –referred to as proximity in Hidalgo et al. (2007)– are calculated as the

minimum of P (i|j) and P (j|i), where each term represents the conditional probability of observing one
product given the presence of another. The minimum is used to eliminate spurious associations and retain
only those pairs of products or industries that are consistently and strongly found together in the data.
As a result, their co-location measure is symmetric, a feature that suits their descriptive analysis but is
less appropriate for our empirical goal, which focuses on directional relationships between industries.
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the differential prevalence of industries in the data. We estimate variations of this regres-

sion to test whether there is a statistically significant relationship between the relatedness

measures and co-exporting patterns. A significant and positive coefficient on the related-

ness measure (�) would indicate that greater similarity or linkage between industries is

associated with a higher likelihood of co-exporting. As an extension, we estimate speci-

fications that include multiple relatedness matrices simultaneously. Since these measures

are often correlated, this approach allows us to test competing explanations for co-location

– such as whether observed patterns are better explained by input-output linkages, occu-

pational similarity, or technological proximity – while controlling for the influence of the

other channels.22

To test competing explanations, we construct several measures capturing different re-

latedness dimensions between industries. The beneficiation narrative implies a directional

relationship between existing industries and the emergence of downstream industries. To

capture this, we compute the share of inputs used in industry i that are sourced from

industry j, using highly disaggregated U.S. Input-Output tables. This measure reflects ac-

tual market flows of intermediate goods and services and provides a strong interpretation

of value-chain linkages, though it requires detailed information on input purchases between

industries.

As a less restrictive and non-directional alternative, we also compute the similarity

of input use between pairs of industries - i.e., the extent to which industries rely on a

similar basket of inputs. We measure similarity of inputs shares using correlation. This

measure allows us to identify relatedness even when direct flows are not observed, and it

is particularly useful when linkages arise through shared production factors rather than
22Our empirical strategy is conceptually related to Ellison, Glaeser and Kerr (2010) and the follow-up

paper by Diodato, Neffke and O’Clery (2018), which study co-agglomeration among U.S. manufacturing
industries. A key difference is the outcome: we analyze co-exporting across countries rather than geo-
graphic co-location. Their findings support a Marshallian view—input sharing, labor-market pooling, and
knowledge spillovers reduce the costs of moving goods, people, and ideas. We extend this framework to the
international context, testing whether Marshallian-type relatedness or technological/occupational proxim-
ity better explains co-export patterns and industry entry/exit. While Marshallian forces are typically
local, we interpret our measures as shared capabilities that operate beyond place.
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explicit supply chains. We further disaggregate this measure by distinguishing between

tradable and non-tradable inputs (e.g., domestic services), which provides insight into

whether co-location and diversification patterns are driven by globally sourced or locally

embedded inputs.

To test explanations beyond direct input-output linkages – focusing instead on knowledge-

based relatedness – we rely on two complementary measures. First, we compute the simi-

larity in the occupational structure of industries, capturing the extent to which industries

employ similar types of workers.23 We measure occupational relatedness as the Pearson

correlation of industry-level occupation share vectors, capturing proximity in workforce

composition. The intuition behind this measure is that industries intensive in similar

occupations (e.g., engineers, technicians) are more likely to co-occur. To analyze hetero-

geneity, we compute separate correlations for high- and low-skill occupations (as defined

above).

Second, we measure technological proximity using similarity in industries’ patent-

citation profiles. Industries drawing on comparable knowledge bases tend to co-occur,

reflecting shared innovation capacity. Together with the occupational metric, this cap-

tures the roles of human capital and technology in productive diversification.

3.2 Density in the industry space

To test whether diversification builds on pre-existing capabilities in a location, we construct

a measure of the density of related industries for each country-industry pair. The empirical

question is whether a new industry is more likely to emerge when industries related to it

–according to the competitive hypothesis– are already present at baseline with sufficient
23An ideal, directional measure of knowledge in diversification would track worker flows between indus-

tries, revealing skill transferability and the direction of capability diffusion. Such data are unavailable
for the United States at the NAICS detail we require: the CPS tracks labor flows but its sample size
is too small to identify inter-industry transitions at this granularity, and data for other countries use
non-comparable classifications. We therefore rely on non-directional proxies—most notably occupational
similarity—to capture knowledge-based relatedness across industries.
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intensity, which we define as RCA � 1. In other words, we examine whether the strength

of related capabilities embedded in a country’s existing industrial structure increases the

likelihood of subsequent industry entry.

For each country-industry pair, we compute a density as:

Densityc,i =

P
j2K 'i,jMc,jP

j2K 'i,j
(4)

where 'i,j is any of the relatedness matrix between industries pairs we explained previously

(e.g. share of inputs that i uses from j), and Mi,j is an indicator of whether other “j”

industry is present in country c with the value of one if RCA � 1, and zero otherwise.

The numerator captures the weighted presence of related industries in each country, while

the denominator normalizes this by the total potential relatedness. Given the units of

relatedness measures and industry presence, the measure lies between zero and one. Note

that in (4), the summation is taken over the set of K industries j that are most closely

related to a given industry i in the relatedness matrix 'i,j. The rationale for restricting the

summation to a subset K is to reduce noise and emphasize the most meaningful linkages.

In this setting, we set K = 60, selecting the 60 industries most closely related to each

industry i based on the chosen relatedness metric.24 In the robustness section, we show

that our results remain stable across a range of alternative values of K.

An important feature of our empirical strategy is that the relatedness metrics 'i,j are

fixed over time and measured for a single reference period. This is straightforward for

relatedness measures based on input–output linkages (from the U.S. BEA tables) or occu-

pational similarity (from the U.S. BLS OES data), which are available for specific years

and reflect relatively stable structural characteristics. However, this approach differs from
24Hausmann, Stock and Yıldırım (2022) suggest an “optimal” neighborhood size is K ⇡

p
N . With

N=232 industries, this implies K ⇡ 15, which is small in absolute terms given the dataset’s sparsity (on
average, only 20% of industries are present per country). We therefore set K = 60 ⇡ (4

p
N) to capture

broader spillovers from related industries while preserving signal. This broader set allows us to capture a
richer picture of potential spillovers from related industries while preserving the strength of the signal in
the density measure.
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other studies in the literature that allow relatedness to vary over time, often recalculating

co-export or capability proximity measures using moving windows. By holding 'i,j con-

stant, we isolate the source of temporal variation in the density Variables to changes in the

presence of related industries. This design choice emphasizes the role of evolving industrial

structure –rather than fluctuating definitions of relatedness– in shaping diversification dy-

namics and allows for a cleaner interpretation of the predictive power of capabilities at

baseline.

Relatedness measures such as co-location and density have been interpreted in different

ways across the literature. Hausmann, Klinger and Lawrence (2008) viewed density as

a proxy for unobserved capabilities shared across industries, while Ellison, Glaeser and

Kerr (2010) emphasized Marshallian externalities such as input sharing, labor pooling,

and knowledge spillovers. More recent contributions (Bahar et al., 2019; Diodato, Neffke

and O’Clery, 2018) further unpack the mechanisms behind co-agglomeration, highlighting

cross-sectoral knowledge flows. Building on these perspectives, our empirical strategy

decomposes density into distinct drivers –input-output linkages, occupational similarity,

and technological proximity– rather than treating it as a black box.

To build intuition for the density measure, Figure 1 presents a toy example centered

on the petrochemical industry, with K = 5 for simplicity. The left panel displays a table

listing the top five industries most closely related to petrochemicals, sorted by their co-

location scores in column 4. The table also includes an indicator variable showing whether

each related industry is present in the country (column 5). The right panel presents

a network visualization: the target industry (petrochemicals) is shown at the center in

orange, surrounded by the five related industries. These are colored green if present in the

country (RCA � 1) and red if absent (RCA < 1, “Fertilizer manufacturing” and “Petroleum

refineries in the example”). The links connecting them to petrochemicals represent the

strength of the relatedness measure, with thicker lines indicating higher weights.

[Figure 1 about here.]
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In the example shown in figure 1 –following the density equation shown in (4)– we

compute the density around petrochemicals by multiplying each relatedness value (column

4) by the corresponding industry presence indicator (column 5). Summing the results and

then dividing by the sum of the relatedness values yields:

Density =
0.791 + 0.551 + 0.550 + 0.521 + 0.520

0.79 + 0.55 + 0.55 + 0.52 + 0.52
=

1.86

2.93
= 0.63

This value reflects the share of total relatedness accounted for by industries already present,

indicating –in this example– a moderate level of embedded capabilities around petrochem-

icals.25 The hypothesis is that a higher density of related industries indicates the presence

of the capabilities required to competitively host a given industry in a specific location.

We define industry entry in a similar way as to how we have defined entry as

Entryc,i,t+5 = [RCAc,i,t+5 � 1|RCAc,i,t  0.25] . (5)

In words, we define industry entry as the transition from a low relative position in world

markets –a revealed comparative advantage below of 0.25 or less– to a meaningful level

of competitive presence captured by RCA of 1 or above.26 While the 0.25 threshold is

somewhat arbitrary, it is chosen to exclude industries that already had a non-negligible

export share and instead focus instead on those that were initially marginal in a country’s

export basket. The intuition is to detect cases of genuine emergence of exports: crossing

this line implies at least a fourfold increase in relative specialization.27

Our focus on the extensive margin follows the policy discourse—especially national
25In this made-up example, notice that we have included industries that are upstream and downstream

from petrochemicals. The calculation of density, in this formulation, is agnostic of the position of industries
along the value-chain.

26The five-year horizon provides one interpretation for testing the predictive power of density. In the
robustness checks, we show that the results are robust to alternative time horizons, confirming the stability
of our findings over different temporal windows.

27Using a more restrictive cut-off (such as RCA < 0.10), would drastically shrink the pool of potential
entrants and risk overlooking relevant diversification episodes that reflect substantive export reorientation.
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plans advocating beneficiation. These strategies aim not to deepen existing specializations

but to foster the emergence of new, higher–value-added activities that build on natural-

resource or agricultural bases while creating novel capabilities. Accordingly, tracking in-

dustry entry provides an empirical counterpart to the stated goal of moving from raw

extraction into downstream processing, manufacturing, and globally competitive value

chains.

To test the predictive power of density, calculated using various relatedness measures,

we estimate regressions of the following form:

Entryc,i,t+5 = �1 ⇥Densityc,i,t + �2 ⇥Mkt Accessc,i,t + �3 ⇥RCAc,i,t + �c,t + �i,t + ec,i,t (6)

where the dependent variable Entryc,i,t+5 is an indicator for whether industry i entries in

country c five years after the baseline year t.28 The key explanatory variable is Densityc,i,t,

capturing the extent of related industries present at baseline.29 In the results section, we

present regression estimates using density measures constructed from different relatedness

metrics to assess the robustness of our findings across alternative definitions of industry

relatedness. To control for demand-side factors, we control for (log) market access for each

country–industry pair, computed as the sum of industry-level imports across all destination

countries, weighted by the inverse of the geodesic distance from country c to each destina-

tion. This measure is intended to capture the potential external demand a country faces

for each industry, adjusted for trade frictions due to geographic distance. We include con-

trols for the initial revealed comparative advantage RCAc,i,t, as well as country-year fixed

effects �c,t and industry-year fixed effects �i,t. The country-year fixed effects absorb time-
28In the entry regressions, we exclude country–industry pairs with initial RCA > 0.25 so that observed

entries reflect substantive transitions rather than marginal, short-term fluctuations in competitiveness.
29Previous studies have examined the predictive power of density on industry entry and exit patterns

using similar empirical strategies. Some examples include Bahar et al. (2019) and Bustos and Yildirim
(2022). Our approach is particularly related to that of Bahar et al. (2019), who compute density using
multiple relatedness matrices and find broadly consistent results regarding the role of related capabilities
in shaping diversification. However, unlike these studies, our analysis places specific emphasis on testing
the explanatory power of beneficiation-related linkages relative to knowledge-based channels.
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varying country-level factors that could influence diversification across all industries—such

as openness, macroeconomic conditions, or national policy shifts—thus isolating the effect

of relatedness and market access on entry and exit dynamics.30

We test whether capabilities diffuse through related industries by examining the sign of

the density coefficient, �1. For entry regressions, we restrict the sample to country-industry

pairs absent at baseline and expect �1 > 0, i.e., a denser presence of related industries raises

the probability of entry. When exploring industry exit, we replace the dependent variable

in (6) with a variable defined as RCA < 0.25 (similar to (5)), restrict to pairs present at

baseline, and expect �1 < 0, implying that greater related density lowers the likelihood of

losing competitive status.

3.3 Data

To implement the methodology of our empirical analysis and test patterns of diversification,

we draw on datasets from multiple sources. These include detailed export data, input-

output tables at the industry-level, occupational structures, and patent citations. We

describe the data sources below, as well as how variables are constructed, and provide

summary statistics to describe the sample used in the analysis.

Following prior studies, we restrict the sample to countries with at least 1 million

people and total trade of at least US$1 billion (in 2015) to reduce noise and ensure that

exports reflect underlying capabilities (Hausmann et al., 2014; Bahar et al., 2019; Bustos

and Yildirim, 2022). These filters yield 134 countries, for which we construct annual

sector-by-country exports to the rest of the world; the sample covers over 90% of world

trade.
30We do not include country-industry fixed effects. By construction, the sample retains only cells with

low initial RCA and removes those that experience entry, producing a highly unbalanced panel in which
many country-industry pairs appear only once. When entry occurs, the unit typically drops out thereafter
(unless a later exit is observed), creating numerous singletons. Country-industry effects would absorb
these observations and eliminate much of the identifying variation, sharply reducing the effective sample
and power.
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• Trade data. We use international trade data from UN COMTRADE, accessed

through the cleaned and harmonized version maintained by Harvard’s Growth Lab

for the Atlas of Economic Complexity. The dataset provides annual export values

by product, classified under HS 1992, for all countries from 1995 to 2022.31 Using

concordance tables, we map HS codes to NAICS industries to enable industry-level

analysis. The resulting dataset is used to measure exports for 233 NAICS-industries.

• Upstream and similar industries. We capture input–output relationships using

the 2012 Input–Output tables from the U.S. Bureau of Economic Analysis. First,

for each industry pair (i, j), we calculate the share of inputs that industry i sources

directly from upstream industry j. Second, we compute input-similarity measures

by correlating the full vectors of input shares across all industry pairs. We further

split this similarity into non-tradable and tradable components.

• Occupation similarity. We measure occupational similarity using the BLS Occu-

pational Employment and Wage Statistics (OES). For each industry, we construct

a vector of occupation employment shares from employment-weighted occupation–

industry cells, averaged over 2015–2020. Similarity between industries is the Pearson

correlation of these vectors. To examine skill intensity, we compute separate correla-

tions for high- and low-skill occupations, defined by whether an occupation’s average

wage is above or below the national median.

• Technology similarity. We proxy technology similarity across industries using

patent citation data from the NBER Patent Data Project (Hall, Jaffe and Trajten-

berg, 2001), which is based on U.S. patent records from 1976 to 2006. Specifically, we

use measures of inter-industry patent citations to assess the degree to which industries
31Our analysis begins in 1995, the first year for which detailed and accurate trade data and a consistent

HS–NAICS mapping are available. We adopt NAICS to leverage complementary datasets –specifically the
U.S. input–output tables and occupational statistics– that enable industry-level measures of linkages and
workforce composition.
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rely on similar technological knowledge. The intuition is that higher citation overlap

between industries indicates greater technological proximity between industries.

• Market Access. We measure country–industry market access as MAc,i =
P

d 6=c
Importsd,i

distcd
,

i.e., destination imports in industry i weighted by inverse bilateral distance (implying

a distance elasticity of �1, in line with estimates found in the trade literature). Trade

data are from the Atlas of Economic Complexity; population–weighted distances are

from CEPII’s GeoDist (Conte et al., 2022).

Table 1 reports descriptive statistics for the co-location measure Ci,j and the related-

ness metrics 'i,j used to unpack co-export patterns. Ci,j is the conditional probability of

competitive presence in industry i given industry j, while 'i,j spans input–output linkages,

occupational similarity, and technological proximity (see previous section). We restrict to

233 tradable industries with complete data, yielding a directed matrix of 233⇥232 = 54,056

industry pairs for the empirical analysis.

[Table 1 about here.]

Table 2 presents descriptive statistics for industry presence, entry, and exit, based on

five-year cross-sections constructed from 1995 to 2020. Panel A reports summary statistics

for the full sample of country–industry observations. Panels B and C restrict the data to

the subsamples used in the entry and exit analyses, respectively. Panel B includes only

those industry–country pairs where the industry was not present at baseline (i.e., eligible

for entry), while Panel C includes only those where the industry was present at baseline

(i.e., at risk of exit), as described in the methodology section.

[Table 2 about here.]
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4 Results

4.1 Decomposing co-location of exports

Table 3 reports OLS estimates from equation (3), relating co-exporting patterns to alter-

native relatedness measures. We first enter each metric separately to compare explanatory

power. Column 1 includes as the sole regressor the share of inputs sourced from the up-

stream industry. Column 1 reports estimates using the share of inputs sourced from the

upstream industry as the independent variable. The results indicate that a one standard

deviation increase in upstream input share is associated with a 1.3 percentage point increase

in the likelihood of observing competitive presence in the downstream industry. Column 2

reports results controlling for the similarity in the inputs used by each pair of industries.

We find that a one standard deviation increase in input similarity is associated with a 4.5

percentage point increase in the likelihood of observing the presence of other industries

that use similar intermediate inputs. In Column 3, we decompose input similarity into

two components: similarity in tradable inputs and similarity in non-tradable inputs. Both

components exhibit explanatory power, with point estimates of 3.7% for tradables and

2.6% for non-tradables, suggesting a slightly stronger effect for tradable input similarity.

[Table 3 about here.]

Next, we examine whether the co-location of industry pairs is driven by similarity in

knowledge-based capabilities, proxied by either occupational structure or patent citations.

Column 4 reports that a one standard deviation increase in occupational similarity is

associated with a 6.2 percentage point increase in the likelihood of co-exporting. In Column

5, we further disaggregate occupations into high-skill and low-skill categories. The results

suggest that high-skill occupational similarity is a stronger predictor of co-exporting, with

coefficients of 4.5% and 3.7% for high- and low-skill occupations, respectively. Finally,

Column 6 shows that a one standard deviation increase in patent citation similarity is

associated with a 1.5 percentage point increase in the probability of joint industry presence.
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The final two columns of Table 3 present specifications that directly compare the ex-

planatory power of input-output linkages and knowledge-based relatedness. Column 7

includes multiple Variables simultaneously and shows that, while all coefficients remain

statistically significant, those associated with input-output linkages decline substantially

in magnitude relative to earlier specifications. In contrast, occupational similarity contin-

ues to exhibit strong explanatory power, with a one standard deviation increase associated

with a 4.8 percentage point increase in the probability of joint industry presence. Column 8

presents a similar specification, this time disaggregating input similarity into tradable and

non-tradable components, and occupational similarity into high and low-skill categories.

The results are consistent: input-based measures have relatively smaller coefficients, while

both high- and low-skill occupational similarities remain strong predictors of co-location.

Interestingly, in Column 7, the coefficient on patent citation similarity is no longer sta-

tistically significant, suggesting that its explanatory power diminishes once other factors

–particularly occupational similarity– are accounted for.

Our interpretation of Table 3 is that while input-output linkages do explain some of the

co-location patterns among industries, knowledge-based measures – particularly occupa-

tional similarity – are consistently stronger predictors of joint industry presence. This sug-

gests that the transmission of know-how and human capital plays a more central role than

supply-chain connections in shaping patterns of productive diversification. The explana-

tory power of patent citation similarity is weaker and becomes statistically insignificant

when controlling for other factors.

Table 4 presents an additional analysis focused on natural resource–related (NNRR) in-

dustries to examine whether the patterns of diversification differ in these sectors.32 Specif-
32We define natural resource industries based on the following eight NAICS codes: 211000 (Oil and gas

extraction), 212100 (Coal mining), 212230 (Copper, nickel, lead, and zinc mining), 2122A0 (Iron, gold,
silver, and other metal ore mining), 212310 (Stone mining and quarrying), 2123A0 (Other nonmetallic
mineral mining and quarrying), 324110 (Petroleum refineries), and 325110 (Petrochemical manufacturing).
We chose a more inclusive approach in defining the oil sector by incorporating multiple codes (211000,
324110, and 325110), given the ambiguous boundary of what constitutes an upstream natural resource in
this context. Unlike commodity trade classifications (e.g., the Harmonized System), which offer greater
specificity for natural resources (NNRR) products, industry classifications tend to be more aggregated,
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ically, we restrict the sample to cases where an NNRR industry is present and examine

which factors predict the presence of other industries. It is noteworthy that restricting the

analysis to the presence of NNRR industries reduces the sample size to 1,856 observations.

Accordingly, the analysis estimates the probability of exporting a given industry conditional

on the presence of NNRR industries. The structure of the table mirrors that of Table 3.

The results indicate that only occupational similarity – particularly in high-skill occupa-

tions – has explanatory power for co-export patterns. All other Variables are statistically

indistinguishable from zero. Notably, the lack of significance for input-output linkages

suggests that, on average, there is no clear pattern indicating that industries which heavily

utilize natural resources tend to co-occur with NNRR industries in a consistent manner.

[Table 4 about here.]

Taken together, Tables 3 and 4 show that natural resource presence has limited ex-

planatory power relative to knowledge-based linkages. We now turn to a complementary

approach, examining how diversification unfolds by analyzing the entry and exit of indus-

tries and how it relates to the set of industries present at baseline in the country.

4.2 Diversification patterns

Table 5 presents the results on industry export entry and exit. The table is divided into

two panels: Columns 1 to 4 report estimates for industry entry, while Columns 5 to 8 re-

port estimates for industry exit. The coefficients indicate whether baseline conditions are

correlated with subsequent patterns of entry or exit. All specifications are estimated using

linear probability models (LPM) via OLS, including year-country and year-industry fixed

effects, with standard errors clustered two-way by country and industry, and all variables

are normalized to have mean of zero and standard deviation of one. Specifications control

for market access at the country-industry level –as a proxy for demand-side conditions–

particularly for mining.
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and include bins of revealed comparative advantage (RCA) interacted with year to flexibly

account for the initial export intensity of industries at baseline.33 For reference, the uncon-

ditional probability of entry is approximately 2%, which provides a useful benchmark for

interpreting the magnitude of the estimated coefficients. Column 1 reports estimates using

density calculated using proximity of industry co-location, a measure well established in

the literature, serving as a benchmark. The results indicate that increasing density using

the proximity of co-location is associated with a 1.2% percentage point increase in the

likelihood of industry entry to exporting (or equivalent to 60% of the unconditional prob-

ability of entry). In Column 2, we use density metrics computed based on the share of

inputs from upstream industries to assess whether the presence of related upstream sectors

is associated with entry. The estimate suggests that a one standard deviation increase in

this input-based density increases the likelihood of entry by 0.198 percentage points (or

10% of the unconditional probability of entry). In Column 3, we test competing hypothe-

ses by including densities based on input similarity, occupational similarity, and patent

citations. Once these alternative measures are introduced, the coefficient on input-based

density becomes statistically insignificant, reversing the conclusion from Column 2. The

density based on input similarity yields a coefficient of 0.325 (17%), indicating a weaker

association with entry compared to occupational similarity. The largest effect in Column

3 comes from occupational similarity, with a coefficient of 0.569 (28%), highlighting the

stronger role of occupation-knowledge-related linkages in predicting industry entry. Inter-

estingly, the density measure based on patent–citation similarity has only a modest effect

and is not statistically significant at conventional levels.

In Column 4, we refine the analysis by disaggregating input and occupational similari-

ties. Specifically, we split input similarity into tradable and non-tradable components and

occupational similarity into high- and low-skill occupations, following the approach used
33For brevity, coefficients on the RCA bins are omitted. They are, on average, positive in the entry

models and negative in the exit models: industries with higher initial RCA are more likely to enter and
less likely to exit, consistent with the relatively high threshold we use to declare presence.
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in the previous section. The results suggest that the explanatory power is concentrated in

densities computed using occupations, while the coefficients for tradable and non-tradable

inputs and are statistically indistinguishable from zero. Both high- and low-skill occupa-

tional densities are significant predictors of entry (coefficients 0.37 and 0.41), highlighting

the role of knowledge-based linkages. By contrast, patent-citation similarity is not sta-

tistically different from zero. Overall, the results suggest that entry into new industries

is largely driven by the availability of local knowledge capabilities rather than by direct

input-output linkages to upstream industries.

[Table 5 about here.]

Columns 5 to 8 present estimates for industry exit from competitive exports, following

in the table the same structure as the entry regressions shown in Columns 1 to 4. Be-

fore turning to the coefficients, note that model fit –as measured by the R-squared– is

almost twice as high for the exit specifications compared to the entry ones. This suggests

that the empirical approach is more effective at predicting which industries are unlikely to

persist in a given location than at identifying which new industries are likely to emerge.

The unconditional probability of industry exit is approximately 5%, providing a useful

benchmark for evaluating the magnitude of the estimated effects. Column 5 reports re-

sults using density based on export co-location, yielding a coefficient of –1.7 (or 34% of

the unconditional probability). This indicates that industries surrounded by others with

which they tend to co-occur are significantly less likely to exit. Column 6 includes density

based on the presence of upstream inputs but finds no statistically significant effect. In

Column 7, we expand the specification to include additional relatedness measures – input

similarity, occupational similarity, and patent citation similarity. The results show that

densities based on input, occupation and patent similarity are strong predictors of lower

likelihood of industry exit. In Column 8, we further disaggregate the relatedness mea-

sures, incorporating densities based on input similarity (tradable vs. non-tradable) and

occupational similarity (high- vs. low-skill). First, when we split input similarity into its
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tradable and non-tradable components, both coefficients are negative but statistically in-

significant; relative to column 7, this decomposition appears to dilute explanatory power.

Second, only the density based on low-skill occupational similarity remains a significant

predictor of industry persistence, whereas the coefficient for high-skill occupational simi-

larity is statistically indistinguishable from zero. Industry persistence is more closely tied

to the density of low-skill occupations, while high-skill density does not appear to matter.

By contrast, patent-citation similarity has a negative, statistically significant coefficient,

indicating that industries with related technological capabilities are more likely to survive.

The results suggest that Knowledge-based linkages—occupational similarity and shared

technological capabilities—are stronger predictors of industry persistence than input–output

linkages. When upstream-input similarity is split into tradable and non-tradable compo-

nents, both coefficients are near zero ((compare columns 3–4 and 7–8)), unlike the specifi-

cation using the full input set. By contrast, similarity in non-tradable inputs and high-skill

occupational density significantly lowers exit risk. The specifications also predict exits bet-

ter than entries, making them useful for flagging structural weaknesses in competitiveness.

Market access helps predict entry but not exit. Overall, locally embedded capabilities and

human capital dominate in shaping patterns of industrial activity.

4.3 The export intensive margin

While beneficiation policies are primarily concerned with fostering the emergence of new

industries –justifying our focus on the extensive margin of trade through the analysis of

industry entry and exit– it is also informative to extend the empirical analysis to the

intensive margin of exports. Specifically, we examine whether export volumes in year

t+5 are influenced by the baseline conditions captured by our different density measures.

Given the prevalence of zero trade flows in the data, we apply Poisson pseudo-maximum

likelihood (PPML) estimation with high-dimensional fixed effects, a method well-suited

for dealing with sparse trade matrices (Weidner and Zylkin, 2021). In this specification,
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we add country-industry fixed effects to the country–year and industry–year effects used

above. These absorb time-invariant heterogeneity at the country–industry level (e.g., in-

trinsic comparative advantage, endowment-driven specialization), thereby controlling for

mechanisms of the form (industry intensity) ⇥ (country endowment) in the Heckscher–

Ohlin tradition and in empirical work such as Romalis (2004) and Nunn (2007).34 Finally,

we control for RCA of the exports at baseline. This setup allows us to isolate the role of

relatedness-based density in shaping the growth of existing exports, beyond what can be

explained by structural fundamentals arising from factors and endowments.

Table 6 presents the results for the extensive margin of exports, using the same spec-

ification structure as in previous tables. All density Variables are standardized to have a

mean of zero and a standard deviation of one, allowing for a direct comparison of effect

sizes across Variables . In column 1, we report that density based on co-location is a strong

and statistically significant predictor of export growth. Column 2 introduces density based

on the share of upstream industries (our proxy for the beneficiation channel), which shows

a positive association with export growth. However, its significance vanishes in column 3

once we control for alternative density measures capturing capability-based explanations.

Notably, in column (3), we estimate that a one standard deviation increase in the density

of similar occupations is associated with a 10% increase in export growth. The estimates

of column 4 further disaggregate the upstream similarity and occupational similarity mea-

sure by skill level, revealing that the growth effect is primarily driven by the presence of

industries employing similar low-skill occupations.

[Table 6 about here.]
34It is worth noting that, in this setting, detecting statistically significant coefficients is inherently

challenging due to the inclusion of high-dimensional fixed effects (country-year, industry-year and country-
industry). These fixed effects absorb much of the variation, especially in the presence of slow-moving factors
such as productive capabilities, which tend to accumulate gradually over time. As a result, the remaining
variation available for identification is limited, making the observed significant associations more robust
and informative.
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4.4 Diversification patterns: robustness checks

To assess the robustness of our findings, this section explores three complementary exer-

cises. First, we restrict the analysis to resource-rich countries to examine whether patterns

of diversification differ in contexts where natural resources are more relevant in shaping

the industrial landscape, and where in theory beneficiation strategies are most relevant.

Second, we test the sensitivity of our results to the choice of the number of related indus-

tries used to compute density (i.e., the parameter k in our density measures). Finally, we

evaluate the predictive power of our empirical approach across alternative time horizons,

comparing industry entry and exit dynamics over 3, 5, 8, and 10 years. These checks help

ensure that our conclusions are robust and not driven by arbitrary choices.

Table 7 explores whether the patterns observed in previous analyses is similar of dif-

ferent for natural resource–rich countries, defined as those where primary commodities

account for more than 70% of exports. The structure of the table mirrors that of Table 5.

For brevity, we focus on the most relevant and unexpected findings. Regarding industry

entry, we find that density based on upstream industries does not exhibit predictive power.

In other words, within this subsample of resource-rich countries, there is no evidence that

new industries systematically emerge by leveraging the presence of upstream sectors from

which they might source inputs. However, we do find strong evidence that diversifica-

tion in these countries continues to rely on knowledge-based linkages, particularly those

associated with occupational similarity. In Column 3, the coefficient on density based on

occupational similarity is 0.4, while Column 4 – where this measure is disaggregated into

high- and low-skill components – shows that the effect is largely driven by high-skill occu-

pations, with a coefficient of 0.37. Interestingly, and in contrast to the estimates based on

the full sample, Table 7 shows that the effect of market access is statistically indistinguish-

able from zero. These results suggest that, in resource-rich economies, diversification is

not primarily driven by demand-side (market-pull) forces. Instead, such countries diversify

much like others do, contrary to beneficiation theories.
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[Table 7 about here.]

Next, we turn to the estimates of industry exit presented in Table 7. Notably, we find

little support for explanations based on input-related linkages: none of the measures cap-

turing the presence of related inputs are statistically significant. The only variable with

predictive power at the 5% confidence level appears in Column 8, where the density of

industries that use similar high-skill occupations is associated with a lower probability of

exit. Industries less proximate to high-skill occupational capabilities are more likely to

lose competitiveness and exit within five years. This reinforces that knowledge-based link-

ages –especially those tied to high-skill labor– are central to sustaining industry presence,

including in resource-rich settings.

The findings from Table 7 suggest that, in natural resource–rich countries, diversifi-

cation is not driven by traditional input-output linkages or demand-side (market access)

factors. Instead, the emergence and persistence of new industries appear to rely heavily on

knowledge-based linkages – particularly those associated with high-skill occupations. The

weak effects of upstream-input density and market access suggest that structural transfor-

mation in these economies depends less on resource linkages or external demand and more

on specialized human capital. Policy should prioritize investments in skills and knowl-

edge systems even in commodity-dependent settings to support sustainable and resilient

diversification.

Table 8 presents a robustness check using alternative values for parameter k in the

density calculation – i.e., the number K-nearest neighbor-industries considered “related” to

a given target industry. This exercise tests whether the estimates are sensitive to the choice

of k, and whether our conclusions hold. Panel A show estimates for industry entry, while

Panel B show estimates for exit, both following the baseline specification used in Column

3 and 7 of Table 5. Both panels contain 10 columns, corresponding to values of k ranging

from 15 to 150, increasing in increments of 15. Column 4, where k = 60, corresponds to

the specification used in the main text of the paper. The results show that the estimated
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coefficients remain stable and statistically significant across different values of k for most

relatedness measures highlighted previously demonstrating the robustness of the findings.

Notably, the density based on the share of upstream inputs –a proxy for the beneficiation

channel– is never statistically significant for any k. This reinforces that forward linkages

captured by input shares have limited explanatory power for industry dynamics.

In panel B, where we show estimates for industry exit, we find something different;

density calculated similar upstream inputs is a stitistically strong predictor a values of k

equal or smaller than 75, while the density of similar occupations becomes statistically

significant starting at k = 45 By contrast, when we estimate specification for density

using similarity in upstream inputs, the results vary with k. In Panel A, for industry

entry, the coefficient is insignificant at low levels of k (i.e., when considering a small set

of neighboring industries), but becomes statistically significant at k = 45 and remains

so for larger k. Over the entire range of k, the density of similar occupations remains a

strong explanatory variable. In Panel B, for industry exit, the density based on similar

upstream inputs is a statistically strong predictor for k  75, whereas the density of similar

occupations becomes statistically significant starting at k = 45.

What value of k maximizes the explanatory power of the density measures? We assess

each specification’s fit using the root mean squared error (RMSE) and the log-likelihood,

benchmarking them against the best-fitting model across all values of k. For brevity,

the table notes report the absolute RMSE and log-likelihood for the best specification,

while each column reports the difference relative to that benchmark (⇥1000). The results

indicate that the best fit for industry entry is achieved at k = 60 (the value used in the

main results), whereas the best fit for exit is at k = 135. Thus, selecting k by maximizing

explanatory power would leave our substantive results and conclusions unchanged.

[Table 8 about here.]

Table 9 presents estimates using four different time horizons –3, 5, 8, and 10 years–

based on the baseline specifications used in Column 3 (for entry) and Column 7 (for exit) of
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Table 5. This robustness check assesses whether the predictive power of density measures

–and our conclusions– vary with the time window considered. Across all time horizons,

variables based on similarity in inputs and in workforce occupations—particularly those

reflecting knowledge-based capabilities—are consistently statistically significant predictors

of industry entry. For industry exit –while occupational-density remains a strong predictor

across horizons– we find that similarity in upstream inputs and patent-citation similarity

are significant predictors of reduced exit (i.e., greater survival) at the 5-year horizon, but

not at longer horizons.

Interestingly, model fit for entry –as measured by R2– improves with longer time hori-

zons, whereas for industry exits the fit deteriorates, making exits harder to predict. This

pattern suggests that capability diffusion and industry emergence unfold over extended pe-

riods, emphasizing the role of structural, knowledge-based factors in shaping diversification

trajectories.

[Table 9 about here.]

5 Concluding remarks

This paper has examined the relative importance of value-chain linkages versus knowledge-

based capabilities in shaping patterns of productive diversification. By unpacking export

co-location and tracking export’s entry and exit of industries across countries, we provide

robust evidence that diversification is far more consistently explained by occupational

similarity and knowledge-based linkages to existing industries than by forward linkages to

upstream resource sectors.

Density metrics based on the share of upstream inputs have little explanatory power

for diversification; any weak associations disappear once other relatedness measures are

included. The pattern is even sharper in resource-rich economies: high-skill occupational

similarity remains significant for entry and reduces exit risk, whereas input–output den-
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sities are insignificant and unstable in sign. Overall, the evidence favors capability rede-

ployment over beneficiation—new industries emerge from recombining existing know-how.

High-skill occupational structure is the most robust predictor of both industry emergence

and survival.

The strength of our argument lies in the consistency of the results: across multiple

specifications, samples, and robustness checks, input-output linkages display little to no

explanatory power once capability-based metrics are accounted for. These findings contrast

sharply with the persistence of beneficiation as a centerpiece of national development

strategies, especially in Sub-Saharan Africa and other resource-rich regions. While policy

blueprints often assume that structural transformation can be engineered by “adding value”

to raw materials or commodities, the empirical record shows no evidence in support of

beneficiation as a reliable path to sustained diversification.

A noteworthy implication of our results is that diversification at the extensive margin

(Table 5) is most strongly associated with the local density of similar occupations –both

high- and low-skill– whereas diversification at the intensive margin (Table 6) is primarily

driven by densities based on low-skill occupational similarity. One plausible mechanism is

that entry into new exporting industries has a high fixed–capability threshold: it requires

a dense presence of complementary workers. Hence extensive-margin diversification corre-

lates with both high- and low-skill occupational density. By contrast, once those lumpy,

high-skill fixed inputs are in place, scaling within existing industries relies more on mar-

gins that are intensive low skilled labor; the binding constraint shifts to the availability of

compatible low-skill (and technician) occupations, making low-skill proximity a stronger

predictor of the intensive margin.

Our contribution is twofold. First, we provide a systematic empirical comparison

of competing hypotheses –something largely absent from the literature– thereby help-

ing reconcile why beneficiation remains politically attractive despite limited evidence of

success. Second, we highlight that successful diversification rests on strengthening knowl-
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edge ecosystems: building occupational capabilities, supporting innovation, and fostering

institutional environments that make more sophisticated industries viable.

From a policy perspective, our findings suggest the need to rethink industrial strate-

gies. This is striking considering the long-standing policy bias toward the beneficiation

hypothesis, which has for decades driven mandates for downstream processing of natural

resources. Instead, governments should prioritize the deliberate accumulation of produc-

tive capabilities; investing in specialized technical skills and designing frameworks that

enable knowledge and know-how to spill over across sectors. Diversification policies should

therefore target more complex industries, capable of sustaining higher wages, that are

adjacent to a country’s existing productive base in terms of non-tradable skills.

Our analysis has some limitations. It focuses on export patterns, which capture only

part of the diversification process, and relies on relatedness measures for inputs and oc-

cupations derived largely from US. data. Future research could expand the analysis by

incorporating domestic production linkages, firm-level dynamics, and the political econ-

omy of why beneficiation persists in policy discourse despite its weak empirical foundations.

By opening this agenda, we hope to inspire further work that bridges empirical analysis

with the design of more realistic industrial policies.

In conclusion, the evidence suggests that productive transformation is less about ex-

tracting more value from what countries have, and more about cultivating the knowledge

required to make what they do not yet have. Recognizing this shift has important implica-

tions for how development strategies are conceived, implemented, and ultimately judged.
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Figure 1: Illustration of density
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5 325310 Fertilizer manufacturing 0.52 0
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Table 1: Summary statistics, industry space - pairwise similarity and input measures

Variable N Min p10 p50 Mean p90 Max SD

Co-location – P (i | j) 54,056 0.000 0.105 0.310 0.325 0.560 1.000 0.174

Share of inputs from upstream industries 54,056 0.000 0.000 0.000 0.004 0.003 0.970 0.030

Similarity in upstream inputs 54,056 0.485 0.497 0.518 0.554 0.673 1.000 0.086
Similarity in upstream / tradabale inputs 54,056 0.486 0.496 0.509 0.548 0.662 1.000 0.088
Similarity in upstream / non-tradabale inputs 54,056 0.496 0.539 0.720 0.723 0.903 1.000 0.127
Similarity in occupations 54,056 0.496 0.519 0.610 0.658 0.898 1.000 0.135
Similarity in occupations / high-skill 54,056 0.522 0.677 0.836 0.826 0.961 1.000 0.106
Similarity in occupations / low-skill 54,056 0.499 0.521 0.613 0.661 0.902 1.000 0.138
Similarity in patents 54,056 0.000 0.000 0.000 0.239 0.556 0.991 0.272

Notes: Percentiles are denoted pq. Co-location is the conditional probability P (i | j).
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Table 2: Summary statistics – industry presence, entry and exit, and densities

Variable N. Min p10 p50 Mean p90 Max SD

Panel A – Full sample

Revealed Comparative Advantage (RCA) 186,167 0.000 0.002 0.173 0.963 1.896 347.600 4.497
Presence (RCA � 1) 186,167 0.000 0.000 0.000 0.200 1.000 1.000 0.400

Density – Proximity (co-location) 186,167 0.000 0.000 0.128 0.206 0.561 1.000 0.231
Density – share of inputs from upstream industries 186,167 0.000 0.000 0.051 0.196 0.640 1.000 0.274
Density – similarity in upstream inputs 186,167 0.000 0.000 0.122 0.203 0.544 1.000 0.235
Density – similarity in upstream / tradable inputs 186,167 0.000 0.000 0.124 0.203 0.542 1.000 0.233
Density – similarity in upstream / non-tradable inputs 186,167 0.000 0.000 0.121 0.199 0.531 1.000 0.229
Density – similarity in occupations 186,167 0.000 0.000 0.124 0.208 0.562 1.000 0.242
Density – similarity in occupations / high-skill 186,167 0.000 0.000 0.101 0.196 0.539 1.000 0.239
Density – similarity in occupations / low-skill 186,167 0.000 0.000 0.123 0.208 0.562 1.000 0.243
Density – similarity in patents 186,167 0.000 0.000 0.000 0.122 0.429 1.000 0.205

Market Access, log 186,167 0.060 0.112 0.191 0.281 0.549 2.820 0.223

Panel B – Sample of exporting industry entry

Revealed Comparative Advantage (RCA) 90,486 0.000 0.000 0.031 0.089 0.204 28.800 0.253
Presence (RCA � 1) 90,486 0.000 0.000 0.000 0.007 0.000 1.000 0.082
New entry (in t+ 5) 90,486 0.000 0.000 0.000 0.020 0.000 1.000 0.140

Density – Proximity (co-location) 90,486 0.000 0.000 0.045 0.109 0.318 1.000 0.158
Density – share of inputs from upstream industries 90,486 0.000 0.000 0.000 0.102 0.363 1.000 0.190
Density – similarity in upstream inputs 90,486 0.000 0.000 0.036 0.106 0.319 1.000 0.158
Density – similarity in upstream / tradable inputs 90,486 0.000 0.000 0.041 0.108 0.318 1.000 0.161
Density – similarity in upstream / non-tradable inputs 90,486 0.000 0.000 0.038 0.105 0.321 1.000 0.153
Density – similarity in occupations 90,486 0.000 0.000 0.034 0.106 0.310 1.000 0.160
Density – similarity in occupations / high-skill 90,486 0.000 0.000 0.022 0.098 0.297 1.000 0.160
Density – similarity in occupations / low-skill 90,486 0.000 0.000 0.035 0.106 0.317 1.000 0.161
Density – similarity in patents 90,486 0.000 0.000 0.000 0.071 0.238 1.000 0.145

Market Access, log 90,486 0.062 0.111 0.173 0.213 0.383 2.300 0.127

Panel C – Sample of exporting industry exit

Revealed Comparative Advantage (RCA) 30,179 1.000 1.122 1.904 4.078 7.129 347.550 9.966
Presence (RCA � 1) 30,179 1.000 1.000 1.000 1.000 1.000 1.000 0.000
New exit (in t+ 5) 30,179 0.000 0.000 0.000 0.032 0.000 1.000 0.177

Density – Proximity (co-location) 30,179 0.000 0.125 0.436 0.451 0.797 1.000 0.250
Density – share of inputs from upstream industries 30,179 0.000 0.000 0.354 0.398 0.919 1.000 0.332
Density – similarity in upstream inputs 30,179 0.000 0.042 0.396 0.413 0.782 1.000 0.266
Density – similarity in upstream / tradable inputs 30,179 0.000 0.051 0.386 0.406 0.773 1.000 0.261
Density – similarity in upstream / non-tradable inputs 30,179 0.000 0.000 0.372 0.397 0.754 1.000 0.267
Density – similarity in occupations 30,179 0.000 0.074 0.425 0.440 0.830 1.000 0.274
Density – similarity in occupations / high-skill 30,179 0.000 0.000 0.389 0.413 0.778 1.000 0.275
Density – similarity in occupations / low-skill 30,179 0.000 0.065 0.421 0.439 0.831 1.000 0.276
Density – similarity in patents 30,179 0.000 0.000 0.048 0.212 0.598 1.000 0.265

Market Access, log 30,179 0.060 0.121 0.334 0.407 0.800 2.820 0.312

Notes: Panel A reports summary statistics for the full sample, Panel B for industries at entry, and Panel
C for industries at exit. Percentiles are denoted pq.
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Table 3: Determinants of co-presence probability

Co-presence probability P (i | j = 1)

Variables (1) (2) (3) (4) (5) (6) (7) (8)

Share of inputs from upstream industry 0.013⇤⇤⇤ 0.007⇤⇤⇤ 0.006⇤⇤⇤
(0.002) (0.001) (0.001)

Similarity – inputs 0.045⇤⇤⇤ 0.022⇤⇤⇤
(0.003) (0.003)

Similarity – tradable inputs 0.037⇤⇤⇤ 0.016⇤⇤⇤
(0.003) (0.002)

Similarity – non-tradable inputs 0.026⇤⇤⇤ 0.010⇤⇤⇤
(0.003) (0.003)

Similarity – occupations 0.062⇤⇤⇤ 0.048⇤⇤⇤
(0.004) (0.003)

Similarity – occupations / high-skill 0.045⇤⇤⇤ 0.039⇤⇤⇤
(0.004) (0.004)

Similarity – occupations / low-skill 0.037⇤⇤⇤ 0.027⇤⇤⇤
(0.004) (0.003)

Similarity – patent citations 0.015⇤⇤⇤ 0.005⇤⇤ 0.001
(0.003) (0.003) (0.003)

Observations 54,056 54,056 54,056 54,056 54,056 54,056 54,056 54,056
R2 0.534 0.574 0.580 0.597 0.616 0.530 0.607 0.623
Table shows OLS estimates controlling for industry i and j fixed effects.
Robust standard errors in parentheses, clustered two-way by industries.
⇤⇤⇤p < 0.01, ⇤⇤p < 0.05, ⇤p < 0.1.
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Table 4: Determinants of co-presence probability for NNRR industries

Co-presence probability P (i | j = 1)

Variables (1) (2) (3) (4) (5) (6) (7) (8)

Share of inputs from upstream industry 0.008 0.003 0.004
(0.006) 0.006) (0.005)

Similarity – inputs 0.001 -0.010
(0.007) (0.008)

Similarity – tradable inputs 0.003 -0.004
(0.006) (0.007)

Similarity – non-tradable inputs -0.006 -0.008
(0.006) (0.004)

Similarity – occupations 0.022** 0.024***
(0.007) (0.006)

Similarity – occupations / high-skill 0.032*** 0.031***
(0.006) (0.007)

Similarity – occupations / low-skill 0.006 0.007
(0.008) (0.008)

Similarity – patent citations -0.007 -0.005 -0.003
(0.005) (0.005) (0.005)

Observations 1,856 1,856 1,856 1,856 1,856 1,856 1,856 1,856
R2 0.819 0.816 0.817 0.825 0.831 0.817 0.827 0.833

Table shows OLS estimates controlling for industry i and j fixed effects.
Robust standard errors in parentheses, clustered two-way by industries.
⇤⇤⇤p < 0.01, ⇤⇤p < 0.05, ⇤p < 0.1.
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Table 5: Determinants of Exports Industry Entry and Exit

Industry entry in t+ 5 Industry exit in t+ 5

VARIABLES (1) (2) (3) (4) (5) (6) (7) (8)

Density – proximity 1.256*** -1.781***
(0.120) (0.322)

Density – share of inputs from upstream industries 0.198*** 0.068 0.058 -0.058 0.240 0.243
(0.070) (0.073) (0.073) (0.156) (0.170) (0.171)

Density – similarity in upstream inputs 0.325*** -0.509**
(0.111) (0.204)

Density – similarity in upstream / tradables 0.149 -0.181
(0.126) (0.216)

Density – similarity in upstream / non-tradables 0.068 -0.279
(0.108) (0.224)

Density – similarity in occupations 0.569*** -0.647***
(0.116) (0.218)

Density – similarity in occupations / high-skill 0.373*** -0.123
(0.127) (0.181)

Density – similarity in occupations / low-skill 0.417*** -0.662***
(0.125) (0.243)

Density – similarity in patent citations 0.025 0.024 -0.838*** -0.822***
(0.098) (0.098) (0.313) (0.312)

Market access, log 2.021*** 2.188*** 2.429*** 2.459*** 2.200* 1.020 1.043 1.022
(0.699) (0.736) (0.721) (0.715) (1.142) (1.142) (1.145) (1.156)

Observations 90,486 90,486 90,486 90,486 30,179 30,179 30,179 30,179
R2 0.120 0.117 0.118 0.118 0.230 0.227 0.229 0.229
Table shows OLS estimates controlling for country-year and industry-year fixed effects.
Estimates include RCA-bins interacted with years-fixed effects.
Robust standard errors in parentheses, clustered two-way by countries and industries.
⇤⇤⇤p < 0.01, ⇤⇤p < 0.05, ⇤p < 0.1.
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Table 6: PPML estimates of determinants of Export’s intensive margin

Export value in t+ 5

Variables (1) (2) (3) (4)

Density – proximity (co-location) 0.134***
(0.022)

Density – share of inputs from upstream industries 0.035*** 0.014 0.015
(0.012) (0.011) (0.011)

Density – similarity in upstream inputs 0.026*
(0.016)

Density – similarity in upstream / tradables 0.024*
(0.014)

Density – similarity in upstream / non-tradables -0.033*
(0.020)

Density – similarity in occupations 0.107***
(0.033)

Density – similarity in occupations / high-skill 0.026
(0.024)

Density – similarity in occupations / low-skill 0.087***
(0.029)

Density – similarity in patent citations 0.024 0.026*
(0.015) (0.015)

Market access, log 0.478*** 0.489*** 0.487*** 0.483***
(0.130) (0.135) (0.125) (0.125)

RCA 0.107*** 0.113*** 0.108*** 0.109***
(0.016) (0.017) (0.016) (0.016)

Observations 153,841 153,841 153,841 153,841
Table shows PPML estimates controlling for country-year and industry-year fixed effects.
Robust standard errors in parentheses, clustered two-way by countries and industries.
⇤⇤⇤p < 0.01, ⇤⇤p < 0.05, ⇤p < 0.1.
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Table 7: Determinants of Exports Industry Entry and Exit Natural Resource Rich Coun-
tries

Industry entry t+ 5 Industry exit t+ 5

Variables (1) (2) (3) (4) (5) (6) (7) (8)

Density – proximity (co-location) 0.666*** -2.716***
(0.152) (0.691)

Density – share of inputs from upstream industry 0.020 -0.039 -0.051 0.566 0.708 0.729
(0.086) (0.098) (0.098) (0.466) (0.447) (0.445)

Density – similarity in upstream inputs -0.016 -0.880*
(0.119) (0.479)

Density – similarity in upstream in tradables -0.092 -0.791
(0.082) (0.522)

Density – similarity in upstream in non-tradables 0.298* -0.291
(0.166) (0.557)

Density – similarity in occupations 0.403*** -0.223
(0.122) (0.488)

Density – similarity in occupations / high-skill 0.369** -1.001**
(0.144) (0.453)

Density – similarity in occupations / low-skill 0.059 0.268
(0.111) (0.576)

Density – similarity in patent citations -0.030 -0.042 0.237 0.281
(0.134) (0.133) (0.483) (0.485)

Market access, log 0.230 0.208 0.217 0.213 -0.847 -0.890 -1.067 -0.733
(0.260) (0.270) (0.266) (0.265) (1.702) (1.750) (1.758) (1.721)

Observations 35,266 35,266 35,266 35,266 4,280 4,280 4,280 4,280
R2 0.127 0.125 0.126 0.126 0.370 0.365 0.366 0.367
Table shows OLS estimates controlling for country-year and industry-year fixed effects.
Estimates include RCA-bins interacted with years-fixed effects.
Robust standard errors in parentheses, clustered two-way by countries and industries.
⇤⇤⇤p < 0.01, ⇤⇤p < 0.05, ⇤p < 0.1.
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Table 8: Industry Entry and Exit with Alternative K-Nearest-Neighbors

Panel A: Industry entry in t+ 5

VARIABLES (1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Density – share of inputs from upstream industries 0.050 0.063 0.064 0.068 0.078 0.089 0.098 0.097 0.100 0.092
(0.078) (0.077) (0.073) (0.073) (0.075) (0.076) (0.076) (0.076) (0.075) (0.073)

Density – similarity in upstream inputs 0.132 0.108 0.172* 0.325*** 0.459*** 0.448*** 0.425*** 0.488*** 0.519*** 0.671***
(0.081) (0.096) (0.100) (0.111) (0.134) (0.149) (0.153) (0.171) (0.169) (0.185)

Density – similarity in occupations 0.454*** 0.509*** 0.536*** 0.569*** 0.342*** 0.341*** 0.378*** 0.366*** 0.379*** 0.320**
(0.099) (0.113) (0.119) (0.116) (0.109) (0.118) (0.125) (0.134) (0.136) (0.143)

Density – similarity in patent citations 0.157** 0.172** 0.106 0.025 0.054 -0.007 0.011 0.009 -0.010 0.001
(0.069) (0.082) (0.095) (0.098) (0.105) (0.102) (0.107) (0.111) (0.109) (0.107)

Market access, log 2.339*** 2.350*** 2.419*** 2.429*** 2.416*** 2.433*** 2.449*** 2.449*** 2.449*** 2.447***
(0.724) (0.726) (0.723) (0.721) (0.724) (0.724) (0.727) (0.729) (0.730) (0.730)

K-Nearest-Neighbor 15 30 45 60 75 90 105 120 135 150
Observations 90,486 90,486 90,486 90,486 90,486 90,486 90,486 90,486 90,486 90,486
R2 0.118 0.118 0.118 0.118 0.117 0.117 0.117 0.117 0.117 0.117
Diff. with respect to min RMSE (⇥1000) 0.16 0.15 0.16 – 0.22 0.30 0.30 0.31 0.31 0.30
Diff. with respect to max log-likelihood (⇥1000) 0.04 0.04 0.04 – 0.06 0.07 0.08 0.08 0.08 0.07

Panel B: Industry exit in t+ 5

VARIABLES (1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Density – share of inputs from upstream industries 0.146 0.188 0.182 0.240 0.214 0.205 0.192 0.179 0.172 0.160
(0.155) (0.168) (0.167) (0.170) (0.176) (0.180) (0.179) (0.178) (0.177) (0.178)

Density – similarity in upstream inputs -0.434** -0.584*** -0.531*** -0.509** -0.423* -0.372 -0.328 -0.351 -0.381 -0.484
(0.171) (0.180) (0.178) (0.204) (0.228) (0.268) (0.271) (0.282) (0.287) (0.314)

Density – similarity in occupations -0.217 -0.283 -0.375* -0.647*** -0.643*** -0.771*** -0.865*** -0.881*** -0.961*** -0.865***
(0.158) (0.191) (0.198) (0.218) (0.236) (0.266) (0.271) (0.258) (0.281) (0.310)

Density – similarity in patent citations -0.554*** -0.707*** -0.772*** -0.838*** -0.998*** -0.984** -1.058*** -1.142*** -1.262*** -1.377***
(0.203) (0.251) (0.293) (0.313) (0.359) (0.383) (0.404) (0.428) (0.450) (0.474)

Market access, log 0.994 1.037 1.048 1.043 0.992 0.989 0.947 0.855 0.839 0.827
(1.144) (1.144) (1.144) (1.145) (1.150) (1.153) (1.158) (1.156) (1.158) (1.157)

K-Nearest-Neighbor 15 30 45 60 75 90 105 120 135 150
Observations 30,179 30,179 30,179 30,179 30,179 30,179 30,179 30,179 30,179 30,179
R2 0.228 0.228 0.228 0.229 0.228 0.229 0.229 0.229 0.229 0.229
Diff. with respect to min RMSE (x1000) 0.72 0.41 0.42 0.08 0.18 0.11 0.03 0.08 – 0.11
Diff. with respect to max log-likelihood (x1000) 0.18 0.10 0.10 0.02 0.05 0.03 0.01 0.02 – 0.03

Table shows OLS estimates controlling for country-year and industry-year fixed effects.
Estimates include RCA-bins interacted with years-fixed effects.
RMSE and log-likelihood for column 4 in Panel A are 13.25 and �361,256, respectively; for column 9 in Panel B they are 16.06 and �125,610.
Robust standard errors in parentheses, clustered two-way by countries and industries.
⇤⇤⇤p < 0.01, ⇤⇤p < 0.05, ⇤p < 0.1.
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Table 9: Determinants of Industry Entry and Exit by Alternative Time Horizons

Industry entry in t+ 5 Industry exit in t+ 5

Variables (1) (2) (3) (4) (5) (6) (7) (8)

Density – share of inputs from upstream industries 0.115* 0.068 0.151 0.132 0.081 0.240 0.177 0.220
(0.059) (0.073) (0.113) (0.177) (0.127) (0.170) (0.186) (0.217)

Density – similarity in upstream inputs 0.178*** 0.325*** 0.613*** 0.828*** -0.270 -0.509** -0.275 -0.405
(0.067) (0.111) (0.187) (0.258) (0.181) (0.204) (0.250) (0.285)

Density – similarity in occupations 0.295*** 0.569*** 0.966*** 1.140*** -0.745*** -0.647*** -0.836*** -0.755**
(0.082) (0.116) (0.212) (0.285) (0.177) (0.218) (0.287) (0.315)

Density – similarity in patent citations 0.069 0.025 0.181 0.098 -0.408* -0.838*** -0.587 -0.136
(0.069) (0.098) (0.144) (0.217) (0.228) (0.313) (0.401) (0.515)

Market access, log 1.555*** 2.429*** 2.912** 5.109*** -0.024 1.043 -0.762 1.419
(0.595) (0.721) (1.253) (1.749) (0.887) (1.145) (1.582) (1.639)

Time horizon 3 5 8 10 3 5 8 10
Observations 143,316 90,486 54,878 37,114 48,580 30,179 17,546 11,372
R2 0.109 0.118 0.121 0.134 0.238 0.229 0.230 0.226
knn 60 60 60 60 60 60 60 60
RMSE 11.29 13.25 15.47 17.93 15.10 16.06 16.64 16.95
log-likelihood -549232 -361256 -227595 -159418 -199221 -125610 -73629 -47920
Table shows OLS estimates controlling for country c and industry i fixed effects. Estimates include RCA-bins interacted with years-fixed effects.
Robust standard errors in parentheses, clustered two-way by countries and industries.
All regressions include country and industry fixed effects.
⇤⇤⇤p < 0.01, ⇤⇤p < 0.05, ⇤p < 0.1

48


