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Abstract

Decision-making is a multifaceted cognitive process influenced by task complexity, information
availability, individual cognitive strategies, and environmental settings. Yet, the neural mechanisms
guiding everyday choices remain incompletely understood. This gap intensifies when integrating real-
time aids, such as artificial intelligence tools (AIT), as cognitive decisionsupport especially for complex
and ambiguous problems. This study explores the neural mechanisms of decision-making and examines
how AIT influences these processes. Combining behavioral assessments and neurophysiological
measurements, we investigate the dynamic interplay between human cognition and AIT through
behavioral execution and electroencephalogram (EEG) activity. Experimental data from 54 participants
suggest that in low-complexity decision-making, AIT is largely ignored in favor of heuristics. In high-
complexity contexts, AIT positively influences decision-making outcomes while also increasing capacity
for engagement with a challenging task as registered by EEG cortical activity. This suggests a non-linear
effect of AIT in decision-making strategies highlighting its role as a complement to —rather than a
replacement of—human cognitive processes.

Introduction

In decision-making research, integrating decision support tools, and most recently artificial intelligence
tools (AIT) has become pivotal, offering novel insights into the cognitive processes’ underlying complex
tasks.”32 AIT have emerged as potent aids providing real-time support and guidance to individuals
navigating intricate decision spaces. Yet, such tools’ effectiveness differs greatly among users. These
differences can be attributed to factors such as individual differences in cognitive styles, trust in
technology, the decision context, and adaptability to novel decision-support systems. While some
individuals seamlessly integrate AIT into their decision-making processes, others hesitate or rely

on familiar cognitive strategies.

Understanding the nuances of AIT effectiveness is crucial for optimizing their use. Research shows that
individual factors, including cognitive workload preferences and technology-related trust, significantly

shape the interaction between users and AIT.>® Moreover, individuals’ adaptability to the evolving
landscape of decision-support technologies contributes to the observed variability in outcomes.

Under typical conditions, when we make a choice, our brains engage in intricate neural computations
that weigh the relevant factors.* The neural substrates involved in decision-making, encompassing
regions such as the prefrontal cortex and other interconnected brain regions, orchestrate a symphony of
activity as we navigate through options and select a course of action.®> However, AIT introduces a new
dimension to this process raising questions about how the human brain collaborates with and adapts to
these advanced cognitive tools.

By studying this new dimension, our research represents a significant methodological advancement
focusing not only on technological efficiency but also dynamic interactions between users and AlT.
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Previous work predominantly focused on evaluating Al tools’ efficiency without adequately addressing
the dynamics of user interactions or acknowledging neuroscience’s crucial role in current Al
development.® Despite increasing research on artificially replicating the human brain using technologies
such as memristors, the assumption remains that biological synapses are stable over time.” However,
this perspective overlooks the dynamic nature of human cognition.

Many Al tools are built assuming that users are completely logical entities who exhibit stable behavior

over time.2 Yet, user behavior can change dynamically especially when interacting with Al systems.
Introducing Al tools may lead to plastic changes in brain structures that in turn affect user behavior,
altering how the user interacts with tools. Therefore, studying users’ physiological responses during Al
interactions could offer valuable insights into these processes and aid in the development of more
efficient and user-friendly tools. By incorporating both behavioral and neurophysiological measurements,
our study goes beyond traditional approaches and provides a more comprehensive understanding of

how AIT influences decision-making processes.

Results

In undertaking this study, we explored AlT’s effect on decision-making across levels of complexity
utilizing behavioral and neurophysiological measures. By employing the lowa Gambling Task (IGT), a
well-established paradigm for decision-making, we investigated how AIT influences participants' choices,
reaction times, and neural oscillatory patterns.

After selecting, testing, and interviewing 27 participants under the conditions for our study (detailed in
the “Methods” section), we performed an in-depth analysis. Participants were interviewed after each
testing session to gather feedback on their decision-making process including their choices, the
difficulties they encountered, and their perceptions of the AlT's usefulness. This led to somewhat
surprising results that contribute to the broader understanding of cognitive and neural dynamics
associated with AlT-assisted decision-making.

Behavioral Data

To analyze behavioral changes over the trials, visual representations were generated to provide insights
into participant responses. Initially, mean values across all participants per experimental condition and
trial were plotted in line graphs. Subsequently, smoothed conditional means with a 95-percent
confidence interval were overlaid to improve data visualization and better understand trends across
trials.

In the raw data for reaction time, an expected abrupt decline was observed in initial trials reflecting
participant adaptation to the experimental task (Fig. 1). Overall, conditions without AIT exhibited faster
reaction times with the low-complexity condition being the fastest. Conversely, the high-complexity
condition with AIT demonstrated the slowest response time and failed to show the stabilization seen in
other conditions.
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Examining the score, the high-complexity condition without AIT exhibited no noticeable changes over
100 trials (Fig. 2). In contrast, the other conditions displayed a consistent increase that stabilized around
the 30th trial. Notably, there were no discernible differences in scores among the low-complexity
conditions. The high complexity with AIT conditions improved execution, although not to the extent
observed in the low-complexity conditions.

For the analysis of variance (ANOVA) test, means per participant across all trials were calculated, and
violin graphs were generated to compare probability distributions (Fig. 3). Reaction times exhibited
higher variance and values in conditions using AIT. The low complexity without AIT condition
demonstrated the fastest reaction time. ANOVA results revealed the most pronounced effect on AIT
parameters with an observed interaction between both factors.

Referring to the mean scores per experimental condition, the low-complexity conditions demonstrated
the highest scores as anticipated (Fig. 4). The high complexity with AIT condition exhibited a distribution
pattern evenly spread along the y-axis, contrasting with the Gaussian-like behavior observed in the other
experimental conditions. This suggests a high variance in scores for this specific condition indicating the
influence of external factors on participant execution. Regarding scores, ANOVA revealed the most
pronounced effect on complexity parameters with an observed interaction between the factors.

EEG Data Analysis

Initially, a comprehensive examination of overall electroencephalogram (EEG) activity was conducted.
Minimal differences existed among the low-complexity conditions, whereas significant findings emerged
at higher complexities. Specifically, in the absence of an AIT presentation, there was a decrease in EEG
activity. Conversely, when an AIT was presented, an increase in EEG activity was noted across most of
the brain cortex. This trend was consistent across most of the 18 recorded derivations, as Fig. 5A
shows.

Upon further investigation into specific frequency bands, notable changes in activity patterns were
identified. In the Theta band, primary differences were observed between various AIT conditions. Without
AIT, a decrease in EEG activity occurred irrespective of task complexity, while the presence of AT led to
heightened EEG activity noticeably at higher complexities. Statistical analysis indicated that these
changes were predominant in prefrontal and occipital derivations (Fig. 5B).

The Alpha band showed a substantial shift in activity patterns. Most EEG activity was observed in the
lower-complexity conditions, although a similar response was seen in the high-complexity conditions
with AIT. Notably, a stark contrast was observed in the higher complexity without AIT, where a decrease
in EEG activity was evident compared to other experimental conditions. Statistical data suggested these
changes occurred across most brain cortexes (Fig. 5C).

The Beta band exhibited a response similar to the Theta band and general activity with a relatively
consistent pattern in lower-complexity conditions. However, a significant contrast emerged between
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lower activity in the higher complexity without AIT and increased activity when an AIT was present. In
contrast to the Theta band, statistical changes were predominantly observed in the parietal and temporal
cortices (Fig. 5D).

Similar to Alpha, the Gamma band presented a distinctive activity pattern (Fig. 5E). Across most
experimental conditions a decrease in EEG activity was observed. An increase in EEG activity was noted
specifically in higher-complexity conditions when presented with AIT. These changes were distributed
across most of the brain cortex, albeit more discretely than in other EEG bands.

Discussion

The present research's primary objective was to assess the effects of AIT on decision-making
behavioral and neurological outcomes at different complexities. Our initial expectation was an
improvement in execution with the presence of an AlT, particularly at higher complexities with an
associated decrease in EEG activity. However, contrary to our expectations, our results demonstrated
that introducing an AIT improved execution but also increased EEG activity.

Behavioral analysis

Most of our initial hypotheses concerning behavioral data were confirmed. Analysis of response times
revealed a decrease as trials progressed consistent with the typical learning component seen in tasks
such as IGT where participants' decision-making improves over time.'? Notably, the high complexity
without an AIT condition exhibited a unique pattern. Unlike in most experimental tasks in which a
decrease in reaction time accompanies execution improvement,’! this experimental condition did not
show such a progression. Despite a reduced reaction time, the score remained stable over 100 trials
showing no improvement. One possible explanation is that participants may have reached a point of
giving up on finding the correct answer.

Giving up on a cognitive task can significantly influence reaction times. When individuals encounter
persistent difficulties or perceive the task as exceptionally challenging, they may actively abandon
searching for the optimal answer.'? This may result in decreased reaction times as participants opt for
quick or intuitive decision-making rather than dedicating additional time to carefully consider available
options which is supported by EEG data.'® This phenomenon may arise from cognitive fatigue, perceived
frustration, and adaptation of response strategies to minimize effort ultimately affecting cognitive tasks’
decision-making speed. Thus, participants in this experimental condition may have perceived no
discernible pattern or correct response prompting them to give up and shift to a faster approach to
conclude the task promptly. During the interviews, several participants reported that they were unable to
identify a deck that was better than the others. This feedback supports the notion that the lack of
certainty regarding the best decision in the task led them to adopt a quicker, less reflective approach to
complete the experiment.
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The scoring data also provided insights into participant execution. As expected, most experimental
conditions showed improvement as trials progressed. To observe a clear effect on behavioral and EEG
data from using an AlT, a goal was to design an experimental condition that could not be resolved
without it. This goal seemed to be achieved, as the high complexity without an AIT condition showed no
improvement over 100 trials. A slight effect of AIT was anticipated for the low-complexity condition.
However, such an effect was either not found indicating that throughout 100 trials execution in the lower-
complexity condition did not differ significantly with or without AIT. This suggests that participants might
have found heuristic alternatives that were more efficient than processing AIT information.

Heuristics or mental shortcuts emerge as swift and effective decision-making strategies when faced
with environments characterized by information overload, by reducing cognitive complexities'*. These
simplifying responses enable individuals to reach conclusions more expediently, thus avoiding depletion
of cognitive resources through exhaustive analysis. In settings where the problem is so complex that
detailed analysis is not viable or even impossible, heuristic responses become invaluable. They offer
satisfactory solutions without requiring in-depth data processing. Hence, in the lower-complexity
condition, where the need for detailed information processing is minimal, participants were more
inclined to ignore AIT suggestions and rely on heuristic approaches.

Intriguing findings emerged when analyzing data from the high-complexity AIT condition. While the
anticipated pattern was a gradually improving performance, similar to the lower-complexity condition in
the final trials, the data revealed no significant improvement in execution scores beyond trials 25 and 30.
This result was perplexing, as the presence of decision support tools would typically lead to a more
pronounced enhancement in efficiency.

A plausible explanation for this can be gleaned from the violin graphs which disclose distinct patterns in
the distribution of this experimental condition compared to others. While the other distributions
appeared relatively normal, the high complexity AIT condition exhibited an almost uniform distribution
(Fig 4). This suggests a substantial variation in AlT’s effectiveness among participants. Some individuals
used AIT to enhance their execution significantly, while others found no utility, resulting in scores akin to
those without AIT. The heterogeneity in responses underscores the individual variability in AlT's
assimilation and application, contributing to the observed diversity in execution outcomes within this one
experimental condition.

Individuals ignoring Al suggestions can be explained through cognitive overload, a condition where the
information presented exceeds an individual's cognitive capacity to process it effectively.’® Human
cognitive resources are finite, and when faced with an overwhelming volume of information individuals
may experience difficulties in assimilating, analyzing, and integrating data.’® This overload often leads to
a cognitive bottleneck hindering decision-making processes. In decision-making tasks involving Al
suggestions, individuals may encounter situations for which the presented information, although
generated by advanced algorithms, becomes too intricate or voluminous to be comprehensively
processed within the available cognitive bandwidth. The capacity to manage information diminishes
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causing individuals to resort to simplified cognitive strategies, such as heuristics, to streamline decision
processes and conserve mental resources.

Determining which individual characteristics influence the effectiveness or outright dismissal of AIT
remains unclear."” While our study did gather some verbal feedback from participants, the specifics of
what influenced their choices were varied and complex. During the interviews, participants provided
insights into their decision-making processes including their reasoning behind accepting or ignoring AIT
suggestions. Some mentioned difficulty in trusting the AIT, while others relied on their intuition or
heuristic strategies indicating a diverse range of factors at play. Interestingly, many participants noted
that they believed the AIT was incorrect and therefore chose to completely ignore it. This contrasts with
the behavioral data, which clearly shows that the AIT did improve participant performance, albeit not to
the extent observed in the low complexity conditions.

However, the complexity and variability of these responses made it challenging to pinpoint definitive
characteristics influencing AlT’s effectiveness. Additionally, some participants did not provide sufficiently
detailed explanations making it difficult to draw concrete conclusions. Future research could benefit
from a more structured approach to collecting and analyzing this type of qualitative data potentially
uncovering clearer patterns and more specific individual characteristics that affect AIT utilization.

Neurophysiological analysis

EEG data analysis can provide valuable insights into the cognitive processes associated with AIT use.
Traditionally, as task difficulty increases, a concurrent rise ensues in EEG activation indicating the
intensified engagement of neural processes necessary for handling complex cognitive tasks.'® When
faced with a more challenging task, the brain recruits additional neural resources to process and
integrate information leading to increased neural firing and synchronization. This heightened activity
often is observed in specific frequency bands, such as Beta and Gamma, associated with cognitive
functions such as attention, working memory, and information processing.®?° The increased EEG
activation during more challenging tasks signifies deployment of cognitive control mechanisms and
allocation of greater attentional resources. It reflects the brain's adaptive response to meet the demands
of the task at hand.

The AIT condition was designed to provide cognitive support and an expected lower EEG activity in these
conditions. In contrast, the conditions with higher complexity and without AIT would exhibit higher EEG
activation. The results instead revealed an almost contrary pattern, particularly in the complex
conditions, where low activation was observed without AIT, and high activation was noted with its
presence. Minimal differences were found in EEG activity between the low-complexity conditions. As
mentioned earlier, adopting a heuristic strategy could be one explanation for the lack of differences in
the low-complexity conditions. In these conditions, inferring the best alternative was relatively
straightforward since the decks presented no losses only wins. Most participants could identify the
correct answer quickly making AlT's suggestions seemingly redundant. The EEG activity supports this
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interpretation. The patterns observed were quite similar with or without AIT indicating a comparable level
of cognitive engagement regardless of AlT's presence in the low-complexity conditions.

The higher-complexity condition revealed a striking contrast in brain activity without AIT. Behavioral data
suggested that participants reached a point of giving up in the search for the best alternative. This
conclusion is substantiated by participants not showing improvement in their execution throughout 100
trials. In contrast to the other conditions, the score’s progression is a flat line while reaction times
decrease. If participants persistently attempted to find the correct answer, one would expect a slower
pace of decrease or even an increase in response times. However, despite making relative mistakes
response times continued to decrease at a pace similar to that of the low-complexity condition.
Consequently, the decrease in EEG activity could be attributed to a lack of engagement in the task. For
most participants, it seemed that there was no discernible correct answer leading them to respond
expeditiously to finish the experimental condition. Verbal reports from participants further support this
notion with some expressing confusion or indicating a belief that their choices did not matter in this
particular condition.

Using AIT resulted in an increase in EEG activity at higher complexities while a decrease in EEG activity
might have been expected. Two factors may have played a role—increased information input and
individual mistrust in AIT. Yet, a third is suggested by the data: enhanced subject engagement in the face
of an enhanced challenge being buoyed by the AIT.

In terms of information input, while AIT offers a potentially easier alternative to evaluating each option
manually, it substantially increases the information presented to the participant. This includes raw
numerical data for each alternative and an adaptive suggestion for possible actions. Participants in this
condition not only had to rely on experience but also had to evaluate the information provided.
Consequently, in the lower-complexity condition, this information largely was ignored. However,
participants still had the option to disregard this information and rely solely on AlT's suggestions. With
this strategy, participants should be able to determine the best response alternative in fewer than 25
trials. Yet behavioral data demonstrated that almost no participant relied solely on AIT’s suggestions.
While they considered such suggestions, they ultimately evaluated the information’s veracity and applied
a personal approach to the problem. This resulted in increased response times and higher EEG activity.
The inclination to validate Al suggestions and incorporate personal judgment may reflect relative
mistrust—that is, a cautious approach driven by concerns about Al-generated information’s accuracy or
reliability.

Mistrust in AIT would lead individuals to rely less on the provided Al-generated suggestions and more on
their own judgment with significant influence on task execution. This mistrust may stem from various
factors, including concerns about the information’s accuracy, reliability, or appropriateness.?'2?
Individuals may question the Al system's ability to fully understand the task’s complexity or adapt
suggestions to the person’s unique cognitive processes and decision-making strategies. Moreover,

apprehensions about Al's lack of contextual understanding, potential biases, or limitations in learning
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from individual preferences can contribute to a sense of mistrust. Consequently, individuals may choose
to validate AlT's suggestions against their own evaluation. This validation process can result in an
increased cognitive load and longer decision-making times. Mistrust in AIT may see a paradoxical
increase in task complexity as individuals reconcile the information provided by AIT with their judgments.

Nonetheless, AIT seems to function as a cognitive support tool in our experimental setting. Without AIT,
participants appeared to abandon the search for an optimal answer.

When presented with an AIT, most participants persisted in trying to resolve the task, increasing scores
as trials progressed—an effect not observed in the condition without AIT. Most participants used AIT as
a guide, incorporating its suggestions into their decision-making process rather than following them
blindly. This nuanced interaction with AIT suggests a balanced integration of Al support into individual
decision-making strategies highlighting its role as a facilitator rather than a replacement for human
cognitive processes as evidenced by the increase in cortical EEG activity.

We found interesting interactions for the experimental conditions when EEG activity is separated by
frequency bands. The Theta band showed a pattern similar to the general cortical activation although it
was mostly localized in the prefontal and occipital cortices. The Theta band is associated with cognitive
processes such as attention, working memory, and mental engagement.?® The observed patterns in
Theta band activity suggest that the experimental conditions influence these cognitive processes. In the
high complexity with AIT condition, Theta band activity increased, suggesting heightened engagement in
attention and working memory processes. This aligns with the behavioral data, indicating that
participants persisted in trying to resolve the task with AlT’s aid. Considering previous findings, the role
of the prefrontal and occipital cortices in the observed EEG activity patterns becomes particularly
significant. These brain regions are crucial for various cognitive processes, and their involvement sheds
light on the neural dynamics associated with decision-making and the impact of AIT use in different
complexities.

The prefrontal cortex, implicated in executive functions, attention, and decision—making,24 showed
distinctive patterns in Theta band activity. In the high complexity without AIT condition, the reduced
Theta activity in the prefrontal cortex aligns with the behavioral data, indicating decreased engagement
in attention and working memory processes. Conversely, increased Theta activity in the high complexity
with AIT condition suggests heightened prefrontal cortex involvement when participants use AIT as a
cognitive support tool.

Similarly, the occipital cortex, primarily responsible for visual processing and perception,?® exhibited
relevant patterns in Theta band activity. These findings suggest that the experimental conditions
influence visual attention and processing demands in decision-making tasks. The increased Theta
activity in the high complexity with AIT condition implies a greater engagement of the occipital cortex
when participants receive visual information from AIT.
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In the Alpha band analysis, a prominent observation emerges from the decrease in EEG activity across
most of the brain cortex in the high complexity without AIT condition. The Alpha band is commonly
associated with relaxation states, cortical arousal inhibition, and decreased cognitive load.?® The marked
decrease in Alpha band activity across most of the brain cortex suggests a shift in the
neurophysiological state associated with AIT use in the experimental conditions. In the high complexity
without AIT condition, the reduced Alpha band activity may reflect a reduction in cognitive load. This
aligns with the behavioral data indicating potential disengagement or giving up in the search for the
optimal answer.

The Beta activity pattern is similar to Theta's. Indeed, the Theta-Beta bands have been associated with
similar cognitive processes including attention, working memory, and engagement in decision-making
tasks.?’ In particular, the high complexity without AIT condition exhibited a notable decrease in Beta
activity, suggesting a potential reduction in cognitive engagement and attentional resources. Conversely,
in the high complexity with AIT condition, the Beta activity pattern showed an increase implying
heightened cognitive engagement and attentional focus when participants used AlT.

Nonetheless, while Theta EEG activity changes occur mainly in the prefrontal cortex, for the Beta band
they were found in the temporal and parietal cortices. These areas have been associated with distinct
cognitive functions, and their involvement in Theta and Beta activity changes adds another layer of
complexity to the interpretation of neural dynamics during decision-making tasks. Temporal and parietal
areas have been linked to processes such as sensory integration, memory retrieval, and spatial
processing.?®2° The localization of Beta activity changes in these regions suggests a differential
engagement of neural circuits associated with distinct cognitive functions. The unique involvement of
the temporal and parietal cortices in Beta activity changes emphasizes the multifaceted nature of
cognitive processing during decision-making. The interplay between Theta and Beta activity across
different brain regions underscores the intricate neural networks implicated in integrating information,
memory, and attentional processes.

The Gamma band exhibited a prominent increase in EEG activity specifically in the high complexity with
AIT condition. Gamma band activity is commonly associated with cognitive functions such as
information processing, perception, integration of sensory stimuli, and overall higher-order cognitive
functions.3%31 This observation implies an escalated cognitive demand unique to the experimental
condition involving AIT. It is crucial to emphasize that AlT's role is to provide support rather than
completely override cognitive functions. Consequently, an enhanced cognitive function was required to
adeptly respond to the task demands, as reflected in the heightened Gamma band activity. Interestingly,
this pattern does not seem to manifest in the other experimental conditions, possibly because of a
heuristic approach’s efficiency or a complete disregard for the task outcome.

The divergent patterns in EEG activity across different frequency bands shed light on the complex neural
processes involved in decision-making tasks. Our findings emphasize the need to understand AIT's
salience for decision-making behavioral outcomes and the neural dynamics involved. Future research
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could explore differences in decision support tool efficacy from alternative formats of presentation,
address trust-related factors, and further dissect the neural mechanisms underlying adaptive decision-
making in dynamic and complex environments. Ultimately, this study contributes to the growing body of
literature bridging analytical decision support, artificial intelligence, cognitive neuroscience, and decision-
making research.

Methods

Participants

Per a maximum variation sampling logic, 54 participants (19 males) with ages ranging between 18 and
37 years (mean = 25, standard deviation = 5) voluntarily agreed to participate in the experiment. No
monetary incentives were provided. All participants were right-handed, had similar educational levels,
and gave informed consent before testing. None of the subjects had a history of neurological or
psychiatric disorders, drug abuse, or chronic iliness. The research protocol and consent process
underwent meticulous review and received approval from the Ethics Committee of the School of
Medicine of Tecnologico de Monterrey in Mexico to ensure adherence to ethical standards.

Decision-Making Task

For this experiment, we used a modified version of the lowa Gambling Task (IGT). The task featured a
digital display of four decks from which participants had to select one per trial. Subsequently, feedback
was provided indicating accrued gains and losses. The objective was to accumulate the most points
over 100 trials per condition. There were two "good" decks with the highest overall gains and two "bad"
decks with lower overall gains.

Each deck had a unique net gain value, calculated based on the aggregate points won versus lost over
the entire deck (i.e., the sum of points won minus the sum of points lost). While all decks had positive
net gain values, indicating net gains in the long run, there were subtle variations within each category.
Specifically, one deck in each category was slightly superior to the other, determined by minimal
statistical variance.

Wins ranged from 30 to 120 points per trial, with the "good" decks having the highest average gains.
Losses ranged from 0 to 400 points per trial, with the "bad" decks having the highest average losses.
Importantly, the overall net gain values of all decks ensured that no deck generated net losses over the
course of the experiment.

Experimental Conditions

The experimental design was based on a 2x2 ANOVA, with the first factor corresponding to the
complexity condition (low and high complexity levels) and the second factor referring to use of an AIT
(with and without it). Thus, four experimental conditions were created:
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1. low complexity without AlT,

2. low complexity with AIT,

3. high complexity without AIT, and
4. high complexity with AIT.

Each participant underwent all experimental conditions in a randomized order. After completing the
decision-making tasks, participants were interviewed briefly to gather qualitative insights into their
experiences. These informal, unstructured interviews focused on Perceptions of AIT, Decision-Making
Strategies, Challenges Encountered, and Task Clarity.

The complexity condition was defined by the number of factors influencing the win ratio and,
consequently, the amount of information needed to achieve the optimal outcome. In the lower-
complexity condition (LOWC), decks provided a variable rate of wins without losses. Participants needed
to consider only the uncertainty in the wins mean to identify the best choice alternative. In the high-
complexity condition (HIGC), the same win ratios were maintained, but losses were introduced, varying
from 0 to 400 points, with losses occurring between 40 and 50 percent of trials. Participants had to
consider not only the variance in wins but also the variance and frequency of losses to respond
effectively.

Regarding AIT availability, two experimental conditions existed: No AIT (NAIT) and with AIT (WAIT). In the
NAIT condition, participants had information about overall winnings and losses, displayed continuously
at the top of the screen (Fig. 6A). The feedback screen was displayed after a selection was made, lasted
2 seconds, and provided information on the chosen deck, associated wins, and applicable losses (Fig.
6C). In the WAIT condition, participants were informed explicitly about access to an AIT which, although
not a real AIT, provided adaptive responses based on truthful information. The AIT offered two additional
information sources: raw numerical information displaying mean wins and losses below each deck, and
a suggestion for the current trial choice (Fig. 6B). The AIT's suggestion evolved through three stages:
initially suggesting exploration of each alternative at least three times, then discarding bad decks and
encouraging further exploration of good decks, and finally suggesting the best alternative after each
good deck was chosen at least 10 times. This setup allowed for simulating a "learning" and adaptive tool
for participants. The feedback screen for this condition replaced the AIT suggestion for the information
on the chosen deck associated wins, and applicable losses (Fig. 6D).

EEG Recording

Adhering to the standard 10—20 system, 18 electrodes were placed to record EEG activity. Electrode
impedance was maintained below 20 kiloohms (kQ) during data collection. Linked ears were selected as
a reference to mitigate contributions from the reference electrode and volume conduction to scalp
correlations. EEG recordings were amplified using a Micromed polygraph with filters set at 1-50 hertz
(Hz), and a sampling rate set at 1,024 Hz. Electrooculograms and electrocardiograms were recorded
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concurrently to identify eye and heart movement artifacts. A bipolar montage was employed with
electrodes at the outer canthi of both eyes and on the front of the left wrist.

Experimental Setting

Volunteers participated in a two-hour experimental session. Initially, the overall experimental setup and
associated risks were explained, and participants, upon agreeing, signed informed consent forms.
Following this, general demographic data including age and education level were documented.
Subsequently, participants were directed to the sound-attenuated EEG recording room where the
temperature was maintained at 21-24°C. In this setting, the electrode cap and Tobii glasses were fitted,
and task-specific and recording instructions were provided.

Participants executed the experimental task on a desktop computer using only the mouse for interface
control. Initial instruction screens appeared providing participants with task-related information. Eight
practice trials then were presented to ensure participants were familiar with the interface and
understood the task rules. Once the practice trials were completed, the main experiment began.
Participants were presented with blocks of 100 trials each. After completing a block, a stop screen
appeared, and a brief break (approximately 3 minutes) was provided. Upon indicating readiness to
continue, the next block started. A total of four blocks (one per experimental condition) were presented
in a randomized order. The task was immediately halted upon completion of the last block, and all
experimental equipment was removed.

Statistical Analysis

Several variables were recorded throughout the experiment including behavioral execution response
time, accumulated wins, and trial scores. Given that some experimental conditions lacked losses, a
direct comparison of win ratios was meaningless, so the trial score served as a valuable parameter to
reflect participant performance. Each deck was assigned an intrinsic score based on its win ratio, with
the best deck receiving a score of 1 and the worst receiving a score of 0. The remaining decks (lower
good and higher bad) were assigned scores proportional to their respective win ratios, falling between 0
and 1. This scored data underwent analysis and comparison through a 2x2 ANOVA.

Meanwhile, with the EEG data, the recordings initially were segregated by experimental conditions.
Following this, a meticulous manual inspection was conducted to identify and eliminate incoherent
artifacts in the signal. Subsequently, an independent component analysis (ICA) was applied to eliminate
coherent artifacts, such as those associated with heart rate, and other unwanted sources of noise. The
processed signal underwent further analysis using a ANOVA design, incorporating Bonferroni correction
for multiple comparisons. To analyze the signal further, a spectral analysis for each traditional EEG band
was performed, including Theta (4-8 Hz), Alpha (8-13 Hz), Beta (13-30 Hz), and Gamma (30-50 Hz).

This comprehensive analysis aimed to explore and characterize the frequency-specific dynamics within
the EEG signal providing valuable insights into neural activity patterns associated with different
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experimental conditions. All analyses were conducted within the MATLAB extension EEGLAB. The
database and scripts required to replicate the analysis can be consulted in the dedicated github

repository of this paper.3®
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Figure 1

Visual representation of changes in response time across experimental conditions. The top graph
illustrates the raw means per trial. The lower graph presents smoothed conditional means with a 95-
percent confidence interval.
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Figure 2
Visual representation of changes in score across experimental conditions. The top graph illustrates the

raw means per trial. The lower graph presents smoothed conditional means with a 95-percent
confidence interval.
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Figure 3

A violin graph (top) illustrates the means per participant of the response time. The violins’ width reflects
the probability density at different values, providing a visual representation of data distribution. A table
(bottom) displays the analysis of variance (ANOVA) test results. DF = degrees of freedom; ges =
generalized eta squared.
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Figure 4

A violin graph (top) illustrates the means per participant of the response time. The violins’ width reflects
the probability density at different values, providing a visual representation of the data distribution. A
table (bottom) displays the results of the ANOVA test. DF = degrees of freedom; ges = generalized eta

squared.
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Figure 5

Topographic maps of (A) general; (B) Theta; (C) Alpha; (D) Beta; and (E) Gamma electroencephalogram
(EEG) activity. The left section shows the general EEG activity maps for each experimental condition,
accompanied by a map illustrating the distribution of p-values and the EEG derivations used in the
analysis. The right section presents the EEG maps for each frequency band, along with the
corresponding distribution of p-values with Bonferroni correction.
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Figure 6
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The top part of the image compares the task screen in both artificial intelligence tools (AIT) conditions:
(A) without AIT and (B) with AIT. The lower part shows the feedback screen: (C) without AIT and (D) with
AlT.
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